On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 41-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2008_2_a5,
     author = {R. Z. Dautov and A. I. Mikheeva},
     title = {On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--47},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_2_a5/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - A. I. Mikheeva
TI  - On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 41
EP  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_2_a5/
LA  - ru
ID  - IVM_2008_2_a5
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A A. I. Mikheeva
%T On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 41-47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_2_a5/
%G ru
%F IVM_2008_2_a5
R. Z. Dautov; A. I. Mikheeva. On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 41-47. http://geodesic.mathdoc.fr/item/IVM_2008_2_a5/

[1] Fridman A., Variatsionnye printsipy i zadachi so svobodnoi granitsei, Mir, M., 1990, 536 pp.

[2] Donati F., “A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems”, Nonlinear Anal., 1982, no. 6, 585–597 | DOI | MR | Zbl

[3] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 574 pp. | MR

[4] Boman M., A posteriori error analysis in the maximum norm for a penalty finite element method for the time-dependent obstacle problem, Preprint 2000-12, Department of Mathematics, Chalmers University of Technology and Goteborg University, 27 pp. | MR

[5] Scholz R., “Numerical solution of the obstacle problem by the penalty method. II: Time-dependent problems”, Numer. Math., 49 (1986), 255–268 | DOI | MR | Zbl

[6] Bensussan A., Lions Zh.-L., Impulsnoe upravlenie i kvazivariatsionnye neravenstva, Nauka, M., 1987, 597 pp.

[7] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR

[8] Apushkinskaya D. E., Ural'tseva N. N., Shahgholian H., “Lipschitz property of the free boundary in the parabolic obstacle problem”, St. Petersburg Math. J., 15:3 (2004), 375–391 | DOI | MR

[9] Dautov R. Z., “Ob operatorakh tochnogo shtrafa dlya ellipticheskikh variatsionnykh neravenstv s prepyatstviem vnutri oblasti”, Differents. uravneniya, 31:6 (1995), 1008–1017 | MR | Zbl

[10] Dautov R. Z., “Zadacha s prepyatstviem vnutri oblasti. Priblizhennoe opredelenie svobodnoi granitsy”, Tr. matem. tsentra im. N. I. Lobachevskogo, 2, 1999, 121–170

[11] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[12] Palmeri M. C., “Homographic approximation for some nonlinear parabolic unilateral problems”, J. Convex Anal., 7:2 (2000), 353–373 | MR | Zbl