On an analytic approach to the solution of a one-dimensional heat transfer problem with free boundaries
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 24-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2008_2_a3,
     author = {R. G. Zainullin},
     title = {On an analytic approach to the solution of a one-dimensional heat transfer problem with free boundaries},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--31},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_2_a3/}
}
TY  - JOUR
AU  - R. G. Zainullin
TI  - On an analytic approach to the solution of a one-dimensional heat transfer problem with free boundaries
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 24
EP  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_2_a3/
LA  - ru
ID  - IVM_2008_2_a3
ER  - 
%0 Journal Article
%A R. G. Zainullin
%T On an analytic approach to the solution of a one-dimensional heat transfer problem with free boundaries
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 24-31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_2_a3/
%G ru
%F IVM_2008_2_a3
R. G. Zainullin. On an analytic approach to the solution of a one-dimensional heat transfer problem with free boundaries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 24-31. http://geodesic.mathdoc.fr/item/IVM_2008_2_a3/

[1] Rubtsov N. A., Sleptsov S. D., Savvinova N. A., “Chislennoe modelirovanie odnofaznoi zadachi Stefana v sloe s prozrachnymi i poluprozrachnymi granitsami”, Prikl. mekhan. i tekhn. fizika, 47:3 (2006), 84–91 | MR | Zbl

[2] Dancer E. N., Du Yihong, “A uniqueness theorem for a free boundary problem”, Proc. Amer. Math. Soc., 134:11 (2006), 3223–3230 | DOI | MR | Zbl

[3] Borisovich Andrei, Friedman Avner, “Symmetry-breaking bifurcations for free boundary problems”, Indiana Univ. Math. J., 54:3 (2005), 927–947 | DOI | MR | Zbl

[4] Baconneau Oliver, Lunardi Alessandra, “Smooth solutions to a class of free boundary parabolic problems”, Trans. Amer. Math. Soc., 356:3 (2004), 987–1007 | DOI | MR

[5] Kartashov E. M., Rubin A. G., Ozherelkova L. M., “Problema Stefana”, Matem. modeli fiz. protsessov, Sb. nauchn. tr. 10-i Mezhdunarodn. konf. (Taganrog, 29–30 iyunya, 2004), Taganrog, 2004, 88–92

[6] Kaliev I. A., Vagapova E. V., “Zadacha Stefana kak koeffitsientnaya obratnaya zadacha”, Sovrem. probl. fiz. i matem., Tr. Vserossiiskoi nauch. konf., T. 1 (Sterlitamak, 16–18 sent., 2004), Ufa, 2004, 43–49

[7] Kaliev I. A., “Nekotorye zadachi lineinoi termouprugosti v teorii fazovykh perekhodov Ginzburga–Landau”, Prikl. mekhan. i tekhn. fiz., 44:6 (2003), 140–147 | MR | Zbl

[8] Bizhanova G. I., Solonnikov V. A., “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR

[9] Kartashov E. M., “Analiticheskie metody resheniya kraevykh zadach nestatsionarnoi teploprovodnosti v oblastyakh s dvizhuschimisya granitsami”, Izv. RAN. Ser. Energetika, 1999, no. 5, 3–34 | MR

[10] Dikii L. A., “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, UMN, 13:3 (1958), 111–143 | MR

[11] Shafeev M. N., “Reshenie odnoi ploskoi zadachi Stefana metodom VGGP”, Inzhenerno-fiz. zhurn., 34:4 (1978), 713–722

[12] Shafeev M. N., “Reshenie odnoi nelineinoi zadachi metodom VGGP”, Izv. vuzov. Matematika, 1980, no. 12, 75–78 | MR | Zbl

[13] Khakimov Kh. R., Zamorazhivanie gruntov v stroitelnykh tselyakh, Gosstroiizdat, M., 1962, 257 pp.

[14] Sleiter L. D., Vyrozhdennye gipergeometricheskie funktsii, Izd-vo VTs AN SSSR, M., 1968, 178 pp. | MR

[15] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 736 pp.

[16] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, In. lit., M., 1958, 474 pp. | MR

[17] Levitan B. M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Tekhteoretizdat, M.–L., 1950, 159 pp. | MR

[18] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, Gostekhizdat, M., 1951, 532 pp.

[19] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 2, Gostekhizdat, M., 1951, 620 pp. | MR

[20] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 1, In. lit., M., 1960, 279 pp. | Zbl

[21] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 2, In. lit., M., 1961, 555 pp. | MR | Zbl

[22] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Nauk. dumka, Kiev, 1965, 798 pp. | MR

[23] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970, 712 pp. | MR | Zbl

[24] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984, 344 pp. | MR