Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_1_a4, author = {I. V. Konnov}, title = {Spatial equilibrium problems for auction-type systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--47}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_1_a4/} }
I. V. Konnov. Spatial equilibrium problems for auction-type systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2008), pp. 33-47. http://geodesic.mathdoc.fr/item/IVM_2008_1_a4/
[1] P. T. Harker (ed.), Spatial price equilibrium: advances in theory, computation and application, Springer-Verlag, Berlin, 1985, 277 pp. | Zbl
[2] Nagurney A., Network economics: A variational inequality approach, Kluwer Academic Publishers, Dordrecht, 1999, 346 pp. | MR
[3] Konnov I. V., Equilibrium models and variational inequalities, Elsevier, Amsterdam, 2007, 248 pp. | MR
[4] Wei J. Y., Smeers Y., “Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices”, Oper. Res., 47:1 (1999), 102–112 | DOI | Zbl
[5] Anderson E. J., Philpott A. B., “Optimal offer construction in electricity markets”, Mathem. Oper. Res., 27:1 (2002), 82–100 | DOI | MR | Zbl
[6] Beraldi P., Conforti D., Triki C., Violi A., “Constrained auction clearing in the Italian electricity market”, 4OR, 2:1 (2004), 35–51 | MR | Zbl
[7] Konnov I. V., “O modelirovanii rynka auktsionnogo tipa”, Issled. po informatike, 10, Kazan, 2006, 73–76
[8] Konnov I. V., “On variational inequalities for auction market problems”, Optim. Lett., 1:2 (2007), 155–162 | DOI | MR | Zbl
[9] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986, 328 pp. | MR | Zbl
[10] Konnov I. V., “A note on Lagrangean dual problems of variational inequalities”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 43, DAS, Kazan, 2001, 83–90
[11] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl
[12] Konnov I. V., “Metody dvoistvennogo tipa dlya obratnykh zadach optimizatsii i ikh obobschenii”, Dokl. RAN, 395:6 (2004), 740–742 | MR | Zbl
[13] Konnov I. V., “Priblizhennyi metod dvoistvennogo tipa dlya sistem variatsionnykh neravenstv”, Izv. vuzov. Matematika, 2005, no. 12, 35–45 | MR
[14] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988, 264 pp.
[15] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53 | MR | Zbl
[16] Konnov I. V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin, 2001, 193 pp.
[17] Konnov I. V., “On the convergence of combined relaxation methods for variational inequalities”, Optim. Meth. Software, 9:1–3 (1998), 77–92 | DOI | MR | Zbl
[18] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Izd-vo Kazansk. un-ta, Kazan, 1993, 100 pp.