Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_1_a3, author = {M. Yu. Kokurin}, title = {Relaxation of the distance to the solution in nonconvex smooth extremal problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--32}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_1_a3/} }
M. Yu. Kokurin. Relaxation of the distance to the solution in nonconvex smooth extremal problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2008), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_2008_1_a3/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Fizmatlit, M., 2005, 384 pp. | MR
[2] Engl H., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000 (321 p.) | MR
[3] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa teoriya i prilozheniya, RKhD, M.–Izhevsk, 2005, 200 pp. | MR
[4] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002, 192 pp.
[5] Scherzer O., “A modified Landweber iteration for solving parameter estimation problem”, Appl. Math. Optim., 38:1 (1988), 45–68 | DOI | MR
[6] Kokurin M. Yu., “Stable iteratively regularized gradient method for nonlinear irregular equations under large noise”, Inverse Problems, 22:1 (2006), 197–207 | DOI | MR | Zbl
[7] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981, 400 pp. | MR
[8] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl