Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_1_a1, author = {I. I. Eremin and L. D. Popov}, title = {Closed {Fej\'er} cycles for incompatible systems of convex inequalities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {11--19}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_1_a1/} }
I. I. Eremin; L. D. Popov. Closed Fejér cycles for incompatible systems of convex inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2008), pp. 11-19. http://geodesic.mathdoc.fr/item/IVM_2008_1_a1/
[1] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp. | MR
[2] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[3] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 519 pp.
[4] Motzkin T. S., Shoenberg I., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | MR | Zbl
[5] Agmon S., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 382–393 | MR
[6] Merzlyakov Yu. I., “Ob odnom relaksatsionnom metode resheniya sistem lineinykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 2:3 (1962), 482–487 | Zbl
[7] Bregman L. M., “Nakhozhdenie obschei tochki vypuklykh mnozhestv metodom posledovatelnogo proektirovaniya”, DAN SSSR, 162:3 (1965), 487–490 | MR | Zbl
[8] Gurin L. G., Polyak B. T., Raik E. V., “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matem. i matem. fiz., 7:6 (1967), 1212–1228 | MR
[9] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, UMN, 20:2 (1965), 183–187 | MR | Zbl