The Faddeev equation and the location of the essential spectrum of a model operator for several particles
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a model operator which acts in a three-particle cut subspace of the Fock space. We describe “two-particle” and “three-particle” branches of the essential spectrum and obtain an analog of the Faddeev equation for the eigenfunctions of this operator.
Keywords: Fock space, model operator, essential spectrum, Faddeev equation.
@article{IVM_2008_12_a7,
     author = {T. H. Rasulov},
     title = {The {Faddeev} equation and the location of the essential spectrum of a model operator for several particles},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--69},
     publisher = {mathdoc},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a7/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - The Faddeev equation and the location of the essential spectrum of a model operator for several particles
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 59
EP  - 69
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_12_a7/
LA  - ru
ID  - IVM_2008_12_a7
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T The Faddeev equation and the location of the essential spectrum of a model operator for several particles
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 59-69
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_12_a7/
%G ru
%F IVM_2008_12_a7
T. H. Rasulov. The Faddeev equation and the location of the essential spectrum of a model operator for several particles. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 59-69. http://geodesic.mathdoc.fr/item/IVM_2008_12_a7/

[1] Mattis D., “The few-body problem on a lattice”, Rev. Modern Phys., 58 (1986), 361–379 | DOI | MR

[2] Fridrikhs K. O., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969, 232 pp. | MR

[3] Malyshev V. A., Minlos R. A., “Klasternye operatory”, Tr. semin. im. I. G. Petrovskogo, 9, 1983, 63–80 | MR | Zbl

[4] Minlos R. A., Spohn H., “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. (2), 177, Amer. Math. Soc., Providence (R.I.), 1996, 159–193 | MR | Zbl

[5] Zhukov Yu. V., Minlos R. A., “Spektr i rasseyanie v modeli “spin–bozon” s ne bolee chem tremya fotonami”, Teor. i matem. fizika, 103:1 (1995), 63–81 | MR | Zbl

[6] Lakaev S. N., Rasulov T. Kh., “Model v teorii vozmuschenii suschestvennogo spektra mnogochastichnykh operatorov”, Matem. zametki, 73:4 (2003), 556–564 | MR | Zbl

[7] Lakaev S. N., Rasulov T. Kh., “Ob effekte Efimova v modeli teorii vozmuschenii suschestvennogo spektra”, Funkts. analiz i ego prilozh., 37:1 (2003), 81–84 | MR | Zbl

[8] Albeverio S., Lakaev S. N., Rasulov T. H., “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 1 (2006) | MR

[9] Ëdgorov G. R., Muminov M. E., “O spektre odnogo modelnogo operatora v teorii vozmuscheniya suschestvennogo spektra”, Teor. i matem. fizika, 144:3 (2005), 544–554 | MR

[10] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, L., 1989, 400 pp. | MR

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982, 430 pp. | MR