Limit theorems for random processes with random time substitution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove a theorem on sufficient conditions for the convergence in the Skorokhod space $D[0,1]$ of a sequence of random processes with random time substitution. We obtain almost certain versions of this theorem.
Keywords: Skorokhod space $D[0,1]$, random process with random time substitution, almost certain version.
@article{IVM_2008_12_a6,
     author = {E. E. Permyakova},
     title = {Limit theorems for random processes with random time substitution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--58},
     publisher = {mathdoc},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a6/}
}
TY  - JOUR
AU  - E. E. Permyakova
TI  - Limit theorems for random processes with random time substitution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 49
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_12_a6/
LA  - ru
ID  - IVM_2008_12_a6
ER  - 
%0 Journal Article
%A E. E. Permyakova
%T Limit theorems for random processes with random time substitution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 49-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_12_a6/
%G ru
%F IVM_2008_12_a6
E. E. Permyakova. Limit theorems for random processes with random time substitution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 49-58. http://geodesic.mathdoc.fr/item/IVM_2008_12_a6/

[1] Silvestrov D. S., Predelnye teoremy dlya slozhnykh sluchainykh funktsii, Vischa shkola, Kiev, 1974, 320 pp. | MR

[2] Chuprunov A., Fazekas I., “Almost sure versions of some analogues of the invariance principle”, Publicationes Math., Debrecen, 54:3 (1999), 457–471 | MR | Zbl

[3] Chuprunov A., Fazekas I., “Integral analogues of almost sure limit theorems”, Periodica Math. Hungarica, 5:1 (2005), 61–78 | DOI | MR

[4] Fazekash I., Chuprunov A. N., “Pochti navernoe predelnye teoremy dlya statistiki Pirsona”, Teor. veroyatnostei i ee prim., 48:1 (2003), 162–169 | MR

[5] Fazekas I., Chuprunov A., Convergence of random step lines to Ornstein–Uhlenbeck type processes, Technical Report of the Debrecen University, No 24, 1996, p. 22. | MR

[6] Atlagh M., Theoreme centrale limite presque sur et loi du logarithme itere, Institut de recherche mathematique avancee, Strasburg, 1996, 62 pp. | MR

[7] Stone C., “Weak convergence of stochastic processes on semiinfinite time intervals”, Proc. Amer. Math. Soc., 14 (1963), 694–696 | DOI | MR | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[9] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp. | MR

[10] Permiakova E., “Functional limit theorems for Levy processes and their almost-sure versions”, Liet. matem. rink., 47:1 (2007), 81–92 | MR | Zbl

[11] Chuprunov A., Fazekas I., “Almost sure versions of some functional limit theorems”, Publicationes Math., Debrecen, 2001, no. 265, 14 | MR