Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 3-6
Cet article a éte moissonné depuis la source Math-Net.Ru
In the ball $S=\{x\in R^n:|x|<1\}$ ($n\ge3$) with the boundary $\Gamma$ we consider the Dirichlet problem \begin{gather*} \Delta u+|x|^m|u|^p=0, \quad x\in S, \\ u_\Gamma=0, \end{gather*} where $m\ge0$, $p>1$ are constants. We prove that the problem has a unique positive radially symmetric solution.
Mots-clés :
positive solution
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
@article{IVM_2008_12_a0,
author = {E. I. Abduragimov},
title = {Uniqueness of a positive radially symmetric solution in a ball to the {Dirichlet} problem for one nonlinear differential equation of the second order},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--6},
year = {2008},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/}
}
TY - JOUR AU - E. I. Abduragimov TI - Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 3 EP - 6 IS - 12 UR - http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/ LA - ru ID - IVM_2008_12_a0 ER -
%0 Journal Article %A E. I. Abduragimov %T Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2008 %P 3-6 %N 12 %U http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/ %G ru %F IVM_2008_12_a0
E. I. Abduragimov. Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 3-6. http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/
[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl
[2] Abduragimov E. I., “O polozhitelnom radialno-simmetricheskom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matematika, 1997, no. 5, 3–6 | MR | Zbl
[3] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 296 pp. | MR