Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the ball $S=\{x\in R^n:|x|1\}$ ($n\ge3$) with the boundary $\Gamma$ we consider the Dirichlet problem \begin{gather*} \Delta u+|x|^m|u|^p=0, \quad x\in S, \\ u_\Gamma=0, \end{gather*} where $m\ge0$, $p>1$ are constants. We prove that the problem has a unique positive radially symmetric solution.
Mots-clés : positive solution
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
@article{IVM_2008_12_a0,
     author = {E. I. Abduragimov},
     title = {Uniqueness of a positive radially symmetric solution in a ball to the {Dirichlet} problem for one nonlinear differential equation of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--6},
     publisher = {mathdoc},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 3
EP  - 6
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/
LA  - ru
ID  - IVM_2008_12_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 3-6
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/
%G ru
%F IVM_2008_12_a0
E. I. Abduragimov. Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 3-6. http://geodesic.mathdoc.fr/item/IVM_2008_12_a0/

[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl

[2] Abduragimov E. I., “O polozhitelnom radialno-simmetricheskom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matematika, 1997, no. 5, 3–6 | MR | Zbl

[3] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 296 pp. | MR