Criteria for the constant sign property for real polynomials on a segment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that classic theorems of Markov and Lukach for real polynomials which have a constant sign on a segment are ineffective. In this paper we obtain criteria for the constant sign property on a segment for real polynomials of the fourth degree and formulate certain generalizations of them. The mentioned criteria are stated in terms of the coefficients of the polynomials under consideration.
Keywords: nonnegative, nonpositive polynomials, polynomials with the least deviation from zero in the integral metric.
@article{IVM_2008_11_a7,
     author = {V. \`E. Gheit and N. Zh. Gheit},
     title = {Criteria for the constant sign property for real polynomials on a segment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a7/}
}
TY  - JOUR
AU  - V. È. Gheit
AU  - N. Zh. Gheit
TI  - Criteria for the constant sign property for real polynomials on a segment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 80
EP  - 85
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_11_a7/
LA  - ru
ID  - IVM_2008_11_a7
ER  - 
%0 Journal Article
%A V. È. Gheit
%A N. Zh. Gheit
%T Criteria for the constant sign property for real polynomials on a segment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 80-85
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_11_a7/
%G ru
%F IVM_2008_11_a7
V. È. Gheit; N. Zh. Gheit. Criteria for the constant sign property for real polynomials on a segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2008_11_a7/

[1] Markov A. A., Izbrannye trudy, Gostekhizdat, M., 1948, 397 pp.

[2] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (trete soobschenie)”, Sib. zhurn. vychisl. matem. / RAN. Sib. otd. — Novosibirsk, 6, no. 1, 2003, 37–58

[3] Korkin A. N., Zolotarev G. I., “Sur une certain minimum”, Nouvelles Annales de mathématiques, Ser. 2, 1873, no. 12, 337–355

[4] Geronimus J., “Sur quelques propriétés extremales de polynomes dont les coefficients premiers sont donnés”, Soobsch. Kharkovsk. matem. o-va i NII matem. i mekhan. pri Kharkovsk. un-te. Ser. 4, 12 (1935), 49–59 | MR | Zbl

[5] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.

[6] Peherstorfer F., “Erweiterung des Satzes von Markoff: Linear Spaces and Approximation”, Proc. Conf. (Oberwolfach, 1977), Intern. Series of Numerical Mathematics, 40, Birkhäuser, Basel–Stuttgart, 1978, 423–431 | MR