A class of isoclinic three-webs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 60-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multidimensional isoclinic three-webs with covariantly constant (with respect to the Chern connection) curvature and torsion tensors. It is proved that there exists a unique (up to an isotopy) isoclinic three-webs with covariantly constant basic tensors. We find structure and finite equations of this web and consider some its properties.
Keywords: multidimensional isoclinic three-webs, curvature and torsion tensors, structure equations of web, $A$-web.
@article{IVM_2008_11_a5,
     author = {L. M. Pidzhakova},
     title = {A class of isoclinic three-webs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--67},
     publisher = {mathdoc},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a5/}
}
TY  - JOUR
AU  - L. M. Pidzhakova
TI  - A class of isoclinic three-webs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 60
EP  - 67
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_11_a5/
LA  - ru
ID  - IVM_2008_11_a5
ER  - 
%0 Journal Article
%A L. M. Pidzhakova
%T A class of isoclinic three-webs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 60-67
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_11_a5/
%G ru
%F IVM_2008_11_a5
L. M. Pidzhakova. A class of isoclinic three-webs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 60-67. http://geodesic.mathdoc.fr/item/IVM_2008_11_a5/

[1] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992, 358 pp. | Zbl

[2] Shelekhov A. M., Pidzhakova L. M., “On three-webs with covariantly constant torsion and curvature tensors”, Webs and Quasigroups, Tver State Univ., Tver, 1998–1999, 92–103 | MR

[3] Bruck R. H., Paige L. J., “Loops whose inner mappings are automorphisms”, Ann. Math., 63:2 (1956), 308–323 | DOI | MR | Zbl

[4] Goodaire E. G., Robinson D. A., “A class of loops which are isomorphic to all loop isotopes”, Canad. J. Math., 34:3 (1982), 662–672 | MR | Zbl