Projective geometry and the theory of physical structures
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 48-59
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we establish connection between $s$-metric physical structures of rank $(s+3,2)$ and projective geometry. In particular, we find explicit functional relations determining phenomenological symmetry. For $s=1$, this relation is expressed in terms of the anharmonic ratio of four points. We prove that these functional relations lead to the group of projective transformations.
Keywords:
physical structure, projective geometry.
@article{IVM_2008_11_a4,
author = {V. A. Kyrov},
title = {Projective geometry and the theory of physical structures},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--59},
year = {2008},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a4/}
}
V. A. Kyrov. Projective geometry and the theory of physical structures. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 48-59. http://geodesic.mathdoc.fr/item/IVM_2008_11_a4/
[1] Mikhailichenko G. G., “Dvumetricheskie fizicheskie struktury ranga $(n+1, 2)$”, Sib. matem. zhurn., 34:3 (1993), 132–143 | MR | Zbl
[2] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, Gorno-Altaisk–Barnaul, 2003, 203 pp. | MR
[3] Efimov N. V., Vysshaya geometriya, GIFML, M., 1961, 580 pp. | MR