Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 12-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We study invertible extensions of the minimal relation generated by a nonnegative operator function and a differential elliptic-type expression. We prove that the operators inverse to such extensions are integral operators and describe such integral operators. We obtain a formula for generalized resolvents of the minimal relation.
Keywords: linear relation, symmetric relation, generalized resolvent, Green function, operator function.
@article{IVM_2008_11_a1,
     author = {V. M. Bruk},
     title = {Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--26},
     publisher = {mathdoc},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 12
EP  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_11_a1/
LA  - ru
ID  - IVM_2008_11_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 12-26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_11_a1/
%G ru
%F IVM_2008_11_a1
V. M. Bruk. Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 12-26. http://geodesic.mathdoc.fr/item/IVM_2008_11_a1/