A difference-analytical method for the computation of eigenvalues of the fourth order equations with separated boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for the computation of eigenvalues with odd multiplicities for spectral boundary value problems of the 4th order with separated boundary conditions. In this method, approximate eigenvalues appear as zeros of a certain function $f(\lambda)$ which admits an explicit representation.
Keywords: eigenvalue, eigenfunction.
@article{IVM_2008_11_a0,
     author = {R. R. Abzalimov and E. V. Salyakhova},
     title = {A difference-analytical method for the computation of eigenvalues of the fourth order equations with separated boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a0/}
}
TY  - JOUR
AU  - R. R. Abzalimov
AU  - E. V. Salyakhova
TI  - A difference-analytical method for the computation of eigenvalues of the fourth order equations with separated boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 3
EP  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_11_a0/
LA  - ru
ID  - IVM_2008_11_a0
ER  - 
%0 Journal Article
%A R. R. Abzalimov
%A E. V. Salyakhova
%T A difference-analytical method for the computation of eigenvalues of the fourth order equations with separated boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 3-11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_11_a0/
%G ru
%F IVM_2008_11_a0
R. R. Abzalimov; E. V. Salyakhova. A difference-analytical method for the computation of eigenvalues of the fourth order equations with separated boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2008_11_a0/

[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 471 pp. | MR

[2] Akulenko L. D., Nesterov S. V., “Chastotno-parametricheskii analiz sobstvennykh kolebanii neodnorodnykh sterzhnei”, PMM, 67:4 (2003), 588–602 | MR | Zbl

[3] Akhtyamov A. M., “Diagnostirovanie zakrepleniya koltsevoi plastiny po sobstvennym chastotam ee kolebanii”, Mekhan. tverdogo tela, 2003, no. 6, 137–147