Projection solution methods for one nonlinear singular integral equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 79-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider a general projection method for the solution of a nonlinear singular integral equation and its applications in the method of orthogonal polynomials, the subdomains method, and the collocation method.
Keywords:
metric space, approximation.
Mots-clés : norm
Mots-clés : norm
@article{IVM_2008_10_a9,
author = {L. E. Shuvalova},
title = {Projection solution methods for one nonlinear singular integral equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {79--83},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a9/}
}
L. E. Shuvalova. Projection solution methods for one nonlinear singular integral equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 79-83. http://geodesic.mathdoc.fr/item/IVM_2008_10_a9/
[1] Shuvalova L. E., “Kvadraturnyi metod resheniya nelineinogo singulyarnogo integralnogo uravneniya”, Izv. vuzov. Matematika, 2007, no. 6, 77–81 | MR | Zbl
[2] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii I-go roda, Izd-vo KGU, Kazan, 1995, 288 pp. | MR
[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR
[4] Ermolaeva L. B., “Reshenie integralnykh uravnenii metodom podoblastei”, Izv. vuzov. Matematika, 2002, no. 9, 37–49 | MR | Zbl