Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the functions of the weighted Besov space on the unit circle in the complex plane in terms of certain operators of fractional differentiation.
Mots-clés : Möbius transform
Keywords: hyperbolic Bergman metric, fractional differentiation operator.
@article{IVM_2008_10_a8,
     author = {F. D. Kodzoeva},
     title = {Characterization of the analytic weighted {Besov} space in terms of the radial differentiation operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--78},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/}
}
TY  - JOUR
AU  - F. D. Kodzoeva
TI  - Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 75
EP  - 78
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/
LA  - ru
ID  - IVM_2008_10_a8
ER  - 
%0 Journal Article
%A F. D. Kodzoeva
%T Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 75-78
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/
%G ru
%F IVM_2008_10_a8
F. D. Kodzoeva. Characterization of the analytic weighted Besov space in terms of the radial differentiation operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 75-78. http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/

[1] Karapetyants A. N., Kodzoeva F. D., “Analytic weighted Besov spaces on the unit ball”, Proc. A. Razmadze Math. Inst., 139 (2005), 121–135 | MR

[2] Zhu K., “Analytic Besov spaces”, J. Math. Anal. Appl., 157 (1991), 318–336 | DOI | MR | Zbl

[3] Zhu K., “Holomorphic Besov spaces on bounded symmetric domains”, Quarterly J. Math. Oxford (2), 46 (1995), 239–256 | DOI | MR

[4] Zhu K., “Holomorphic Besov spaces on bounded symmetric domains, II”, Indiana Univ. Math. J., 44:4 (1995), 1017–1031 | DOI | MR | Zbl

[5] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Springer-Verlag, New York, 2000, 299 pp. | MR | Zbl

[6] Zhu K., Spaces of holomorphic functions in the unit ball, Graduate texts in Math., Springer, 2004, 301 pp. | MR

[7] Zhu K., Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, xvi, 348 p. | MR

[8] Karapetyants A. N., Kodzoeva F. D., “Kharakterizatsiya funktsii iz vesovogo analiticheskogo prostranstva Besova na edinichnom diske”, Kompleksnyi analiz. Teoriya operatorov. Matem. modelir., Izd-vo VNTs RAN, Vladikavkaz, 2006, 48–62 | MR