Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 75-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We characterize the functions of the weighted Besov space on the unit circle in the complex plane in terms of certain operators of fractional differentiation.
Mots-clés : Möbius transform
Keywords: hyperbolic Bergman metric, fractional differentiation operator.
@article{IVM_2008_10_a8,
     author = {F. D. Kodzoeva},
     title = {Characterization of the analytic weighted {Besov} space in terms of the radial differentiation operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--78},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/}
}
TY  - JOUR
AU  - F. D. Kodzoeva
TI  - Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 75
EP  - 78
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/
LA  - ru
ID  - IVM_2008_10_a8
ER  - 
%0 Journal Article
%A F. D. Kodzoeva
%T Characterization of the analytic weighted Besov space in terms of the radial differentiation operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 75-78
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/
%G ru
%F IVM_2008_10_a8
F. D. Kodzoeva. Characterization of the analytic weighted Besov space in terms of the radial differentiation operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 75-78. http://geodesic.mathdoc.fr/item/IVM_2008_10_a8/

[1] Karapetyants A. N., Kodzoeva F. D., “Analytic weighted Besov spaces on the unit ball”, Proc. A. Razmadze Math. Inst., 139 (2005), 121–135 | MR

[2] Zhu K., “Analytic Besov spaces”, J. Math. Anal. Appl., 157 (1991), 318–336 | DOI | MR | Zbl

[3] Zhu K., “Holomorphic Besov spaces on bounded symmetric domains”, Quarterly J. Math. Oxford (2), 46 (1995), 239–256 | DOI | MR

[4] Zhu K., “Holomorphic Besov spaces on bounded symmetric domains, II”, Indiana Univ. Math. J., 44:4 (1995), 1017–1031 | DOI | MR | Zbl

[5] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Springer-Verlag, New York, 2000, 299 pp. | MR | Zbl

[6] Zhu K., Spaces of holomorphic functions in the unit ball, Graduate texts in Math., Springer, 2004, 301 pp. | MR

[7] Zhu K., Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, xvi, 348 p. | MR

[8] Karapetyants A. N., Kodzoeva F. D., “Kharakterizatsiya funktsii iz vesovogo analiticheskogo prostranstva Besova na edinichnom diske”, Kompleksnyi analiz. Teoriya operatorov. Matem. modelir., Izd-vo VNTs RAN, Vladikavkaz, 2006, 48–62 | MR