A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the propagation of TM-polarized electromagnetic waves in a nonlinear dielectric layer located between two linear media. The nonlinearity in the layer is described by the Kerr law. We reduce the problem to a nonlinear boundary eigenvalues problem for a system of ordinary differential equations. We obtain a dispersion relation and a first approximation for eigenvalues of the problem. We compare the results with those obtained for the case of a linear medium in the layer.
Mots-clés : dispersion relation
Keywords: boundary value problem, Kerr nonlinearity.
@article{IVM_2008_10_a7,
     author = {D. V. Valovik and Yu. G. Smirnov},
     title = {A nonlinear boundary eigenvalues problem for {TM-polarized} electromagnetic waves in a nonlinear layer},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--74},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a7/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - Yu. G. Smirnov
TI  - A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 70
EP  - 74
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_10_a7/
LA  - ru
ID  - IVM_2008_10_a7
ER  - 
%0 Journal Article
%A D. V. Valovik
%A Yu. G. Smirnov
%T A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 70-74
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_10_a7/
%G ru
%F IVM_2008_10_a7
D. V. Valovik; Yu. G. Smirnov. A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 70-74. http://geodesic.mathdoc.fr/item/IVM_2008_10_a7/

[1] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Soviet Phys. Jetp., 35:1 (1972), 44–47 | MR

[2] Schurmann H. W., Serov V. S., Shestopalov Yu. V., “Reflection and transmission of a plane $TE$-wave at a lossless nonlinear dielectric film”, Physica D, 158 (2001), 197–215 | DOI | MR

[3] Joseph R. I., Christodoulides D. N., “Exact field decomposition for $TM$ waves in nonlinear media”, Optics Letters, 12:10 (1987), 826–828 | DOI | MR

[4] Leung K. M., Lin R. L., “Scattering of transverse-magnetic waves with a nonlinear film: formal field solutions in quadratures”, Phys. Review B, 44:10 (1991), 5007–5012 | DOI | MR

[5] Valovik D. V., Smirnov Yu. G., “Rasprostranenie $TM$-polyarizovannykh elektromagnitnykh voln v nelineinom sloe s nelineinostyu, vyrazhennoi zakonom Kerra”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2007, no. 3, 35–45 | MR

[6] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968, 720 pp. | MR

[7] Snyder A., Love J., Optical waveguide theory, Chapman and Hall, London, 1983, 450 pp. | MR