The Hicks property for a variational problem on a graph
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 48-54
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we use the Hicks property for a variational problem on a graph. For an elastic system defined on a graph we state a well-posed problem which implies the definition and the study of the kernel.
Mots-clés :
kernel
Keywords: Hicks property, variational problem on a graph.
Keywords: Hicks property, variational problem on a graph.
@article{IVM_2008_10_a5,
author = {Yu. V. Pokornyi and E. V. Gulynina and T. V. Perlovskaya},
title = {The {Hicks} property for a variational problem on a graph},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--54},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/}
}
TY - JOUR AU - Yu. V. Pokornyi AU - E. V. Gulynina AU - T. V. Perlovskaya TI - The Hicks property for a variational problem on a graph JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 48 EP - 54 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/ LA - ru ID - IVM_2008_10_a5 ER -
Yu. V. Pokornyi; E. V. Gulynina; T. V. Perlovskaya. The Hicks property for a variational problem on a graph. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 48-54. http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/
[1] Morishima M., Ravnovesie, ustoichivost, rost, Nauka, M., 1972, 179 pp.
[2] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 518 pp.
[3] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | Zbl