Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_10_a5, author = {Yu. V. Pokornyi and E. V. Gulynina and T. V. Perlovskaya}, title = {The {Hicks} property for a variational problem on a graph}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {48--54}, publisher = {mathdoc}, number = {10}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/} }
TY - JOUR AU - Yu. V. Pokornyi AU - E. V. Gulynina AU - T. V. Perlovskaya TI - The Hicks property for a variational problem on a graph JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 48 EP - 54 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/ LA - ru ID - IVM_2008_10_a5 ER -
Yu. V. Pokornyi; E. V. Gulynina; T. V. Perlovskaya. The Hicks property for a variational problem on a graph. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 48-54. http://geodesic.mathdoc.fr/item/IVM_2008_10_a5/
[1] Morishima M., Ravnovesie, ustoichivost, rost, Nauka, M., 1972, 179 pp.
[2] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 518 pp.
[3] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | Zbl