Convergence in the integral metrics of the general projective solution method for singular integral equations of the first kind with the Cauchy kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the projective solution method for singular integral equations of the first kind with the Cauchy kernel. Depending on the index of the equation, we introduce pairs of weight spaces which represent the restriction of the space of summable functions. We prove the correctness of the stated problem. We obtain sufficient conditions for the convergence of the projective method in the integral metrics.
Keywords: singular integral equation of the first kind, projective method, approximation.
@article{IVM_2008_10_a4,
     author = {A. V. Ozhegova},
     title = {Convergence in the integral metrics of the general projective solution method for singular integral equations of the first kind with the {Cauchy} kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--47},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_10_a4/}
}
TY  - JOUR
AU  - A. V. Ozhegova
TI  - Convergence in the integral metrics of the general projective solution method for singular integral equations of the first kind with the Cauchy kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 39
EP  - 47
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_10_a4/
LA  - ru
ID  - IVM_2008_10_a4
ER  - 
%0 Journal Article
%A A. V. Ozhegova
%T Convergence in the integral metrics of the general projective solution method for singular integral equations of the first kind with the Cauchy kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 39-47
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_10_a4/
%G ru
%F IVM_2008_10_a4
A. V. Ozhegova. Convergence in the integral metrics of the general projective solution method for singular integral equations of the first kind with the Cauchy kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2008), pp. 39-47. http://geodesic.mathdoc.fr/item/IVM_2008_10_a4/

[1] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda, Izd-vo KGU, Kazan, 1994, 288 pp.

[2] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995, 520 pp. | Zbl

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 638 pp.

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR

[5] Ozhegova A. V., Valiullova L. E., “O ravnomernoi approksimatsii resheniya singulyarnogo integralnogo uravneniya I roda proektsionnymi metodami”, Matematika, Materiali PershoïMizhnarodnoïnaukovo-praktichnoïkonferentsïi “Naukovii potentsial svitu'2004”. T. 31, Nauka i osvita, Dnipropetrovsk, 2004, 64

[6] Ozhegova A. V., Ravnomernye priblizheniya reshenii slabo singulyarnykh integralnykh uravnenii pervogo roda, Diss. kand. fiz.- matem. nauk, Kazan, 1996, 96 pp.

[7] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo KGU, Kazan, 1980, 232 pp.

[8] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M., 1949, 688 pp.

[9] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.