Poincar\'e conjecture and related statements
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2007), pp. 3-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_9_a0,
     author = {V. N. Berestovskii},
     title = {Poincar\'e conjecture and related statements},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--41},
     publisher = {mathdoc},
     number = {9},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_9_a0/}
}
TY  - JOUR
AU  - V. N. Berestovskii
TI  - Poincar\'e conjecture and related statements
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 3
EP  - 41
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_9_a0/
LA  - ru
ID  - IVM_2007_9_a0
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%T Poincar\'e conjecture and related statements
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 3-41
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_9_a0/
%G ru
%F IVM_2007_9_a0
V. N. Berestovskii. Poincar\'e conjecture and related statements. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2007), pp. 3-41. http://geodesic.mathdoc.fr/item/IVM_2007_9_a0/

[1] Puankare A., “Pyatoe dopolnenie k “Analysis situs””, Anri Puankare. Izbrannye trudy. T. II. Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, M., 1972, 674–734

[2] Hempel J., $3$-manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press, 1976, 194 pp. | MR | Zbl

[3] Johanson K., Homotopy equivalences of $3$-manifolds with boundaries, Lect. Notes in Math., 761, Springer-Verlag, Berlin–New-York, 1978

[4] Jaco W. J., Shalen P. B., “Seifert fibered spaces in $3$-manifolds”, Mem. Amer. Math. Soc., 21, no. 220, 1979, 1–192 | MR

[5] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N.S.), 6:3 (1982), 357–381 | DOI | MR

[6] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986, 164 pp.

[7] Hamilton R. S., “Three-manifolds with positive Ricci curvature”, J. Differential Geometry, 17 (1982), 255–306 | MR | Zbl

[8] Perelman G., The entropy formula for the Ricci flow and its geometric applications, , 11 Nov. 2002, 39 pp. E-print arXiv.org/abs/math.DG/0211159

[9] Perelman G., Ricci flow with surgery on three-manifolds, , 10 Mar. 2003, v1. 22 p. E-print arXiv.org/abs/math.DG/0303109

[10] Perelman G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, , 17 Jul. 2003, v1. 7 p. E-print arXiv.org/abs/math.DG/0307245

[11] Milnor J., “Towards the Poincaré conjecture and the classification of $3$-manifolds”, Notices Amer. Math. Soc., 50:10 (2003), 1226–1233 | MR | Zbl

[12] Shioya T., Yamaguchi T., “Volume collapsed three-manifolds with a lower curvature bound”, Math. Ann., 333 (2005), 131–155 | DOI | MR | Zbl

[13] Morgan J. W., “Recent progress on the Poincare conjecture and the classification of $3$-manifolds”, Bull. Amer. Math. Soc., 42:1 (2004), 57–78 | DOI | MR

[14] Anderson M., “Geometrization of $3$-manifolds via the Ricci flow”, Notices Amer. Math. Soc., 51:2 (2004), 184–193 | MR | Zbl

[15] Colding T. H., Minicozzi II W. P., “Estimates for the extinction time for the Ricci flow of certain $3$-manifolds and a question of Perelman”, Journ. Amer. Math. Soc., 18:3 (2005), 561–569 | DOI | MR | Zbl

[16] Kleiner B., Lott J., Notes on Perelman's papers, , 25 May 2006, v1. 192 p. E-print arXiv.org/abs/math/0605667

[17] Besson G., Preuve de le conjecture de Poincaré en deformant le métrique par la corbure de Ricci, d'après G. Perel'man, Asterisque, 307, Société Mathématique de France, 2006 | MR | Zbl

[18] Morgan J. W., Tian G., Ricci flow and the Poincaré conjecture, , 25 Jul. 2006, v1. 473 p. E-print arXiv.org/abs/math/0607607

[19] Cao H.-D., Zhu X.-P., “A complete proof of the Poincaré and geometrization conjectures. Application of the Hamilton–Perelman theory of the Ricci flow”, Asian J. Math., 10:2 (2006), 145–492 | MR

[20] Bing R. H., “Necessary and sufficient conditions that a $3$-manifold be $S^3$”, Ann. of Math., 68 (1958), 37–65 | DOI | MR

[21] Newman M. H. A., “The engulfing theorem for topological manifolds”, Ann. of Math., 84 (1966), 555–571 | DOI | MR | Zbl

[22] Freedman M. H., “The topology of four-dimensional manifolds”, J. Dif. Geom., 17 (1982), 357–453 | MR | Zbl

[23] Rado T., “Über den Begriff der Riemannschen Fläche”, Acta Litt. Scient. Univ. Szeged, 2 (1925), 101–121 | Zbl

[24] Kerékjártó B. V., Vorlesungen über Topologie. I. Flächentopologie, Springer, 1923 | Zbl

[25] Moise E. E., “Affine structures on $3$-manifolds. V: The tringulation theorem and Hauptvermutung”, Ann. of Math., 56 (1952), 96–114 | DOI | MR | Zbl

[26] Davis M. W., Januszkiewicz T., “Hyperbolization of polyhedra”, J. Differential Geom., 34:2 (1991), 347–388 | MR

[27] Bing R. H., “Some aspects of the topology of $3$-manifolds related to the Poincaré conjecture”, Lectures on modern mathematics, II, ed. T. L. Saaty, John Wiley and Sons, New York, 1964, 93–128 | MR

[28] Berestovskii V. N., “Pathologies in Alexandrov spaces with curvature bounded above”, Siberian Adv. Math., 12:4 (2002 (2003)), 1–18 | MR | Zbl

[29] Bestvina M., Daverman R. J., Venema G. A., Walsh J. J., “A $4$-dimensional $1$-LCC shrinking theorem”, Geometric topology and geometric group theory (Milwaukee, Wi, 1997), Top. Appl., 110, no. 1, 2001, 3–20 | MR | Zbl

[30] Cairns S. S., “Homeomorphisms between topological manifolds and analytic Riemannian manifolds”, Ann. of Math. (2), 41 (1940), 796–808 | DOI | MR

[31] Whitehead J. H. C., “Manifolds with transverse fields in euclidean space”, Ann. of Math., 73 (1961), 154–212 | DOI | MR | Zbl

[32] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979, 371 pp. | MR | Zbl

[33] Brower L. E. J., “Zum Triangulationsproblem”, Nederl. Akad. Wetensch. Proc., 42 (1939), 701–706 | MR

[34] Cerf J., Sur les difféomorphismes de la sphére de dimension trois $(\Gamma_4=0)$, Lect. Notes in Math., 53, Springer-Verlag, Berlin, 1968 | MR | Zbl

[35] Cairns S. S., “Introduction of a Riemannian geometry on a triangulable $4$-manifolds”, Ann. of Math. (2), 45:2 (1944), 218–219 | DOI | MR | Zbl

[36] Hirsh M., Masur B., Smoothing piecewise linear manifolds, Annals of Math. Studies, 80, Princeton University Press, Princeton, 1974 | MR

[37] De Michelis S., Freedman M. H. A., “Uncountably many exotic $\mathbb{R}^4$'s in standard $4$-space”, J. Differential Geom., 35:1 (1992), 219–255 | MR

[38] Donaldson S., “Irrationality and $h$-cobordism conjecture”, J. Differential Geom., 2:1 (1987), 141–168 | MR

[39] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976, 463 pp. | MR

[40] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988, 271 pp. | MR

[41] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986, 176 pp. | MR | Zbl

[42] Whitehead J. H. C., “On simply connected $4$-dimensional polyhedra”, Comment. Math. Helv., 22 (1949), 48–92 | DOI | MR | Zbl

[43] Rokhlin V. A., “Novye rezultaty v teorii chetyrekhmernykh mnogoobrazii”, DAN SSSR, 84 (1952), 221–224 | Zbl

[44] L. Giiu, A. Maren (red.), V poiskakh utrachennoi topologii, Mir, M., 1989, 293 pp. | MR

[45] Chetyrekhmernaya rimanova geometriya. Seminar Artura Besse. 1978/79, Mir, M., 1985, 332 pp. | MR

[46] Mandelbaum R., Chetyrekhmernaya topologiya, Mir, M., 1981, 286 pp. | MR | Zbl

[47] Freedman M. H., Quinn F., Topology of $4$-manifolds, Princeton University Press, Princeton, New Jersey, 1990, 258 pp. | MR | Zbl

[48] Donaldson S. K., “An application of gauge theory to the topology of $4$-manifolds”, J. Diff. Geom., 18 (1983), 269–316 | MR

[49] Freedman M. H., Luo F., Selected applications of geometry to low-dimensional topology, Marker Lectures in the Mathematical Sciences. The Pennsylvania State University. University Lecture Series, 1, Amer. Math. Soc., Providence, Rhode Island, 1989, 79 pp. | MR | Zbl

[50] Furuta M., “Monopole equation and the $\frac{11}{8}$-conjecture”, Math. Res. Lett., 8 (2001), 279–291 | MR | Zbl

[51] Kirby R. C., Siebenmann L. C., Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press–University of Tokyo Press, Princeton, New Jersey, 1977, 355 pp. | MR | Zbl

[52] Wall C. T. C., Surgery on compact manifolds, 2nd Ed., Mathematical Surveys and monographs, 69, ed. Ranicki A. A., Amer. Math. Soc., Providence, Rhode Island, 1999, 302 pp. | MR | Zbl

[53] Fintushel R., Stern R. J., “Knots, links, and $4$-manifolds”, Invent. Math., 134:2 (1998), 363–400 | DOI | MR | Zbl

[54] Massi U., Stollings Dzh., Algebraicheskaya topologiya. Vvedenie, Mir, M., 1972, 344 pp. | MR

[55] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp. | MR

[56] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, 1997, 351 pp.

[57] Baer R., “Noethersche Gruppen”, Math. Z., 66 (1956), 269–288 | DOI | MR | Zbl

[58] Stallings J., “How not to prove the Poincaré conjecture”, Ann. of Math. Studies, 60, Princeton Univ. Press, 1966, 83–88

[59] Jaco W., “Heegaard splittings and splitting homomorphisms”, Trans. Amer. Math. Soc., 144 (1969), 365–379 | DOI | MR | Zbl

[60] Waldhausen F., “Heegaard-Zerlegungen der $3$-sphere”, Topology, 7 (1968), 195–203 | DOI | MR | Zbl

[61] Papakyriakopoulos C. D., “On Dehn's lemma and asphericity of knots”, Ann. of Math., 66 (1957), 1–26 | DOI | MR | Zbl

[62] Epstein D. B. A., “Curves on $2$-manifolds and isotopies”, Acta Math., 115 (1966), 83–107 | DOI | MR | Zbl

[63] Kesson E., Bleier S., Teoriya avtomorfizmov poverkhnostei po Nilsenu i Terstonu, Fazis, Moskva, 1998, 111 pp.

[64] Stallings J., “A topological proof of Grushko's theorem on free products”, Math. Zeit., 90 (1965), 1–8 | DOI | MR | Zbl

[65] Milnor J. W., “A unique factorization theorem for $3$-manifolds”, Amer. J. Math., 74 (1962), 1–7 | DOI | MR

[66] Alexander J. W., “The combinatorial theory of complexes”, Ann. of Math., 31 (1930), 292–320 | DOI | MR | Zbl

[67] Alexander J. W., “An example of a simply connected surface bounding a region which is not simply connected”, Proc. Nat. Acad. Sci. USA, 10 (1924), 8–10 | DOI

[68] Bing R. H., “A homeomorphism between the $3$-sphere and the sum of two solid horned spheres”, Ann. of Math., 56:2 (1952), 354–362 | DOI | MR | Zbl

[69] Kneser H., “Geschlossene Flächen in dreidimensionale Mannigfaltigkeiten”, Jahresber. Deutsch. Math.-Verein, 38 (1929), 248–260 | Zbl

[70] Whitehead J. H. C., “On $2$-spheres in $3$-manifolds”, Bull. Amer. Math. Soc., 64 (1958), 161–166 | DOI | MR | Zbl

[71] Whitehead J. H. C., “A certain open manifold whose group is unity”, Quart. J. Math. (2), 6 (1935), 268–279 | DOI

[72] Whitehead J. H. C., The mathematical works of J. H. C. Whitehead. V. II. Complexes and manifolds, ed. I. M. James, Pergamon Press, Oxford–New York–Paris, 1962 | Zbl

[73] McMillan D. R. Jr., “Some contractible open $3$-manifolds”, Trans. Amer. Math. Soc., 102 (1962), 373–382 | DOI | MR

[74] McMillan D. R. Jr., “Cartesian products of contractible open manifolds”, Bull. Amer. Math. Soc., 67 (1961), 510–514 | DOI | MR | Zbl

[75] McMillan D. R. Jr., Zeeman E. C., “On contractible open manifolds”, Proc. Camb. Phil. Soc., 58 (1962), 221–224 | DOI | MR | Zbl

[76] Kister J. M., McMillan D. R. Jr., “Locally euclidean factors of $E^4$ which cannot be embedded in $E^3$”, Ann. of Math., 76 (1962), 541–546 | DOI | MR | Zbl

[77] Stallings J., “On the loop theorem”, Ann. of Math., 72 (1960), 12–19 | DOI | MR | Zbl

[78] Epstein D. B. A., “Projective planes in $3$-manifolds”, Proc. London Math. Soc. (3), 11 (1961), 469–484 | DOI | MR | Zbl

[79] Thomas C. B., “Free actions by finite groups on $S^3$”, Algebraic and geometric topology, Part 1 (Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, 125–130 | MR

[80] Hatcher A., “A proof of the Smale conjecture, $\mathrm{Diff}(S^3)\cong O(4)$”, Ann. of Math., 117 (1983), 553–607 | DOI | MR | Zbl

[81] Hopf H., “Zum Clifford–Kleinschen Raumproblem”, Math. Ann., 95 (1925–26), 313–319 | DOI | MR

[82] Seifert H., Threlfall W., “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes”, Math. Ann., 104 (1930–31), 1–70 | MR | Zbl

[83] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp. | MR

[84] Puankare A., “Vtoroe dopolnenie k “Analysis situs””, Anri Puankare. Izbrannye trudy. T. II. Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, M., 1972, 594–622

[85] Evans B., Moser L., “Solvable fundamental groups of compact $3$-manifolds”, Trans. Amer. Math. Soc., 168, 189–210 | DOI | MR | Zbl

[86] Alexander J. W., “Note on two three-dimensional manifolds with the same group”, Trans. Amer. Math. Soc., 20 (1919), 339–342 | DOI | MR | Zbl

[87] Hass J., Rubinstein J. H., Scott P., “Covering spaces of $3$-manifolds”, J. Differential Geom., 30 (1989), 817–832 | MR | Zbl

[88] Waldhausen F., “On irreducible $3$-manifolds which are sufficiently large”, Ann. of Math. (2), 87 (1968), 56–88 | DOI | MR | Zbl

[89] Jaco W., Lectures on $3$-manifold topology, CBMS Regional Conference Series in Mathematics, 43, American Mathematical Society, Providence, R.I., 1980, 251 pp. | MR | Zbl

[90] Waldhausen F., “The word problem in fundamental groups of sufficiently large irreducible $3$-manifolds”, Ann. of Math. (2), 88 (1968), 272–280 | DOI | MR | Zbl

[91] Dunfield N. M., Thurston W. P., “The virtual Haken conjecture: Experiments and examples”, Geometry and Topology, 7 (2003), 399–441 | DOI | MR | Zbl

[92] Matveev S., Algorithmic topology and classification of $3$-manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin–Heidelberg–New York, 2003, 478 pp. | MR

[93] Haken W., “Über das Homöomorphieproblem der $3$-Mannigfaltigkeiten, I”, Math. Z., 80 (1962), 89–120 (German) | DOI | MR | Zbl

[94] Hemion G., “On the classification of knots and $3$-dimensional spaces”, Acta Math., 142:1–2 (1979), 123–155 | DOI | MR | Zbl

[95] Waldhausen F., “Recent results on sufficiently large $3$-manifolds”, Algebraic and geometric topology, Part 2 (Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, 21–38 | MR

[96] Johanson K., “Classification problems in low-dimensional topology”, Geometric and algebraic topology, Banach Center Publ., 18, Warsaw, 1986, 37–59 | MR

[97] Hemion G., The classification of knots and $3$-dimensional spaces, Oxford Science Publications, The Clarendon Press; Oxford University Press, New York, 1992 | MR

[98] Bestvina M., Handel M., “Train-tracks for surface homeomorphisms”, Topology, 34:1 (1995), 109–140 | DOI | MR | Zbl

[99] Seifert H., “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60 (1933), 147–238 | DOI | MR

[100] Seifert H., Threlfall W., A textbook of topology, Pure and Applied Mathematics, 89, Academic Press, 1980 | MR | Zbl

[101] Orlik P., Seifert manifolds, Lect. Notes in Math., 291, Springer, Berlin, 1972 | MR | Zbl

[102] Aleksandrov A. D., “Odna teorema o treugolnikakh v metricheskom prostranstve i nekotorye ee prilozheniya”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 38, 1951, 5–23 | MR | Zbl

[103] Alexandrov A. D., “Über eine Verallgemeinerung der Riemannschen Geometrie”, Schriftenr. Inst. Math. Deutsch. Acad. Wiss., 1957, no. 1, 33–84 | MR

[104] Aleksandrov A. D., Berestovskii V. N., Nikolaev I. G., “Obobschennye rimanovy prostranstva”, UMN, 41:3 (1986), 3–44 | MR | Zbl

[105] Bridson M. R., Haefliger A., Metric spaces of non-positive curvature, Springer-Verlag, 1999, 643 pp. | MR | Zbl

[106] Berestovskii V. N., “O prostranstvakh s ogranichennoi kriviznoi”, Dokl. AN SSSR, 258:2 (1981), 269–271 | MR

[107] Berestovskii V. N., “Prostranstva s ogranichennoi kriviznoi i distantsionnaya geometriya”, Sib. matem. zhurn., 27:1 (1986), 11–25 | MR

[108] Bruhat F., Tits J., “Groupes réductifs sur un corps local. I: Données radicielles valuées”, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5–251 | DOI | MR | Zbl

[109] Alexander S. B., Bishop R. L., “The Hadamard–Cartan theorem in locally convex spaces”, L'Enseign. Math., 36 (1990), 309–320 | MR | Zbl

[110] Burago Yu., Gromov M., Perelman G., “Prostranstva A. D. Aleksandrova s ogranichennymi snizu kriviznami”, UMN, 47:2 (1992), 3–51 | MR | Zbl

[111] Berestovskii V. N., “Zadacha Borsuka o metrizatsii poliedra”, Dokl. AN SSSR, 268:2 (1983), 273–277 | MR

[112] Berestovskii V. N., “Mnogoobraziya s vnutrennei metrikoi odnostoronne ogranichennoi po A. D. Aleksandrovu krivizny”, Matematicheskaya fizika. Analiz. Geometriya, 1:1 (1994), 41–59 | MR

[113] Borsuk K., Teoriya retraktov, Mir, M., 1971, 291 pp. | MR

[114] Ancel F. D., Giulbault C. R., “Interiors of compact contractible $n$-manifolds are hyperbolic $(n\geq5)$”, J. Differential Geom., 45 (1997), 1–32 | MR | Zbl

[115] Nikolaev I. G., “The tangent cone of an Aleksandrov space of curvature $\leq K$”, Manuscripta Math., 86 (1995), 683–689 | DOI | MR

[116] Alexandrov A. D., Berestovskii V. N., “Riemannian spaces, generalized”, Encyclopaedia of Mathematics, V. 8, ed. M. Hazewinkel (Managing Ed.), Kluwer Academic Publishers, Dordrecht–Boston–London, 1992, 150–152

[117] Rokhlin V. A., “Trekhmernoe mnogoobrazie — granitsa chetyrekhmernogo”, DAN SSSR, 81 (1951), 355–357 | Zbl

[118] Matumoto T., Variétés simpliciales d'homologie et variétés topologiques métrisables, These de doctorat d'etat, Université de Paris XI, Centre d'Orsay, Octobre 1976

[119] Galewski D., Stern R., “Classification of simplicial triangulations of topological manifolds”, Ann. Math., 11 (1980), 1–34 | DOI | MR

[120] Cannon J. W., “The recognition problem: what is a topological manifold?”, Bull. Amer. Math. Soc., 84 (1978), 832–866 | DOI | MR | Zbl

[121] Bing R. H., “A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$”, Ann. of Math. (2), 65 (1957), 484–500 | DOI | MR | Zbl

[122] Edwards R. D., “The topology of manifolds and cell-like maps”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 111–127 | MR

[123] Daverman R. J., Decompositions of manifolds, Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, Fl., 1986, 317 pp. | MR | Zbl

[124] Quinn F., “An obstruction to the resolution of homology manifolds”, Michigan Math. J., 34 (1987), 285–291 | DOI | MR | Zbl

[125] Bryant R., Ferry S., Mio W., Weinberger S., “Topology of homology manifolds”, Ann. Math. (2), 143:3 (1996), 435–483 | DOI | MR

[126] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR

[127] Berestovskii V. N., “Prostranstva Buzemana ogranichennoi sverkhu krivizny po Aleksandrovu”, Algebra i analiz, 14:5 (2002), 3–18 | MR

[128] Jakobsche W., “The Bing–Borsuk conjecture is stronger than the Poincaré conjecture”, Fund. Math., 106:2 (1980), 127–134 | MR | Zbl

[129] Berestovskii V. N., “K probleme konechnomernosti $G$-prostranstva Buzemana”, Sib. matem. zhurn., 18:1 (1977), 219–221 | MR

[130] Krakus B., “Any $3$-dimensional $G$-space is a manifold”, Bull. Acad. Pol. Sci. Ser. Math. Astronom. Phys., 16 (1968), 285–291 | MR

[131] Thurston P., “$4$-dimensional Busemann $G$-spaces are $4$-manifolds”, Differential Geom. and Appl., 6:3 (1996), 245–270 | DOI | MR | Zbl

[132] Daverman R. J., Thickstun T. L., “The $3$-manifolds recognition problem”, Trans. Amer. Math. Soc., 358 (2006), 5257–5270 | DOI | MR | Zbl

[133] Kavichcholi A., Repovsh D., Tikstun T., “Geometricheskaya topologiya obobschennykh $3$-mnogoobrazii”, Fundam. i prikl. matematika, 11, 2005, 71–84 | MR

[134] Meeks III W. H., Yau S. T., “Topology of three dimensional manifolds and the embedding problems in minimal surface theory”, Ann. Math. Soc., 112 (1980), 441–484 | DOI | MR | Zbl

[135] Meeks III W. H., Yau S. T., “The classical Plateu problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas–Morrey and an analytic proof of Dehn's lemma”, Topology, 21:4 (1982), 409–442 | DOI | MR | Zbl