@article{IVM_2007_8_a9,
author = {D. A. Dubovikov},
title = {An analog of the {L\"owner} equation for mappings of strips},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {77--80},
year = {2007},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2007_8_a9/}
}
D. A. Dubovikov. An analog of the Löwner equation for mappings of strips. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2007), pp. 77-80. http://geodesic.mathdoc.fr/item/IVM_2007_8_a9/
[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl
[2] Goryainov V. V., “Polugruppy konformnykh otobrazhenii”, Matem. sb., 129:4 (1986), 451–472 | MR
[3] Rohde S., Schramm O., “Basic properties of SLE”, Ann. Math., 161:2 (2005), 879–920 | DOI | MR
[4] Duren P. L., Univalent functions, Springer-Verlag, New York, 1983, 393 pp. | MR | Zbl
[5] Goryainov V. V., “Drobnye iteratsii analiticheskikh v edinichnom kruge funktsii s zadannymi nepodvizhnymi tochkami”, Matem. sb., 182:9 (1991), 1281–1299 | MR
[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR
[7] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 892 pp.