Equiaffine mappings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2007), pp. 27-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_8_a2,
     author = {T. V. Zudina and S. E. Stepanov and I. G. Shandra},
     title = {Equiaffine mappings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--34},
     publisher = {mathdoc},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/}
}
TY  - JOUR
AU  - T. V. Zudina
AU  - S. E. Stepanov
AU  - I. G. Shandra
TI  - Equiaffine mappings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 27
EP  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/
LA  - ru
ID  - IVM_2007_8_a2
ER  - 
%0 Journal Article
%A T. V. Zudina
%A S. E. Stepanov
%A I. G. Shandra
%T Equiaffine mappings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 27-34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/
%G ru
%F IVM_2007_8_a2
T. V. Zudina; S. E. Stepanov; I. G. Shandra. Equiaffine mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2007), pp. 27-34. http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/

[1] Nomizu K., “What is affine differential geometry?”, Diff. Geometry Meeting Univ. Müster 1982, Tagungsbericht, 1982, 42–43 | MR

[2] Nomizu K., “On completeness in affine differential geometry”, Geom. dedic., 20:1 (1986), 43–49 | DOI | MR | Zbl

[3] Simon U., “K affinnoi teorii giperpoverkhnostei: kalibrovochno-invariantnye struktury”, Izv. vuzov. Matematika, 2004, no. 11, 53–81 | MR

[4] Stepanov S. E., “Teoremy ischeznoveniya v affinnoi, rimanovoi i lorentsevoi geometriyakh”, Fundamentalnaya i prikladnaya matematika, 11:1 (2005), 35–84 | MR | Zbl

[5] Stepanov S. E., “The seven classes of equiaffine mappings of pseudo-Riemannian manifolds”, Abstracts of 9th International Conference on Differential Geometry and Applications (Prague, August 30–September 3, 2004), Charles University in Prague, Czech Republic, 2004, 46–47

[6] Zudina T. V., “Primer ekviaffinnogo otobrazheniya”, Materialy Chetvertoi molodezhnoi nauchnoi shkoly-konferentsii “Lobachevskie chteniya–2005”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 31, Izd-vo Kazansk. matem. ob-va, Kazan, 2005, 74–76

[7] Stepanov S. E., Shandra I. G., “Sem klassov garmonicheskikh diffeomorfizmov”, Matem. zametki, 74:5 (2003), 752–761 | MR | Zbl

[8] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 224 pp. | MR

[9] Zulanke R., Vintgen D., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975, 352 pp.

[10] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971, 232 pp.

[11] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959, 319 pp. | MR | Zbl

[12] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR

[13] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 255 pp. | MR | Zbl

[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR

[15] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teoreticheskaya i matematicheskaya fizika, 111:1 (1997), 32–43 | MR | Zbl

[16] Simon U., Schwenk-Schellshmidt A., Viesel H., Introduction to the affine differential geometry of hypersurfaces, Lecture Notes, Science Univ. Tokyo Press, Tokyo, 1991, 161 pp. | MR

[17] Dillen F., Nomizu K., Vrancken L., “Conjugate connections and Radon's theorem in affine differential geometry”, Monatshefte Mathematik, 109 (1990), 221–235 | DOI | MR | Zbl

[18] Shirokov P. A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v Riemann'ovykh prostranstvakh”, Izv. fiz.-matem. o–va, Kazan, 25 (1925), 86–114

[19] Zudina T. V., Stepanov S. E., “Ob odnom klasse ekviaffinnykh otobrazhenii”, Differents. geometriya mnogoobrazii figur, 2005, no. 36, 43–49 | MR