Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_8_a2, author = {T. V. Zudina and S. E. Stepanov and I. G. Shandra}, title = {Equiaffine mappings}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--34}, publisher = {mathdoc}, number = {8}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/} }
T. V. Zudina; S. E. Stepanov; I. G. Shandra. Equiaffine mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2007), pp. 27-34. http://geodesic.mathdoc.fr/item/IVM_2007_8_a2/
[1] Nomizu K., “What is affine differential geometry?”, Diff. Geometry Meeting Univ. Müster 1982, Tagungsbericht, 1982, 42–43 | MR
[2] Nomizu K., “On completeness in affine differential geometry”, Geom. dedic., 20:1 (1986), 43–49 | DOI | MR | Zbl
[3] Simon U., “K affinnoi teorii giperpoverkhnostei: kalibrovochno-invariantnye struktury”, Izv. vuzov. Matematika, 2004, no. 11, 53–81 | MR
[4] Stepanov S. E., “Teoremy ischeznoveniya v affinnoi, rimanovoi i lorentsevoi geometriyakh”, Fundamentalnaya i prikladnaya matematika, 11:1 (2005), 35–84 | MR | Zbl
[5] Stepanov S. E., “The seven classes of equiaffine mappings of pseudo-Riemannian manifolds”, Abstracts of 9th International Conference on Differential Geometry and Applications (Prague, August 30–September 3, 2004), Charles University in Prague, Czech Republic, 2004, 46–47
[6] Zudina T. V., “Primer ekviaffinnogo otobrazheniya”, Materialy Chetvertoi molodezhnoi nauchnoi shkoly-konferentsii “Lobachevskie chteniya–2005”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 31, Izd-vo Kazansk. matem. ob-va, Kazan, 2005, 74–76
[7] Stepanov S. E., Shandra I. G., “Sem klassov garmonicheskikh diffeomorfizmov”, Matem. zametki, 74:5 (2003), 752–761 | MR | Zbl
[8] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 224 pp. | MR
[9] Zulanke R., Vintgen D., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975, 352 pp.
[10] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971, 232 pp.
[11] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959, 319 pp. | MR | Zbl
[12] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR
[13] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 255 pp. | MR | Zbl
[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR
[15] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teoreticheskaya i matematicheskaya fizika, 111:1 (1997), 32–43 | MR | Zbl
[16] Simon U., Schwenk-Schellshmidt A., Viesel H., Introduction to the affine differential geometry of hypersurfaces, Lecture Notes, Science Univ. Tokyo Press, Tokyo, 1991, 161 pp. | MR
[17] Dillen F., Nomizu K., Vrancken L., “Conjugate connections and Radon's theorem in affine differential geometry”, Monatshefte Mathematik, 109 (1990), 221–235 | DOI | MR | Zbl
[18] Shirokov P. A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v Riemann'ovykh prostranstvakh”, Izv. fiz.-matem. o–va, Kazan, 25 (1925), 86–114
[19] Zudina T. V., Stepanov S. E., “Ob odnom klasse ekviaffinnykh otobrazhenii”, Differents. geometriya mnogoobrazii figur, 2005, no. 36, 43–49 | MR