Certain constants in absolutely convergent Fourier series for functions from~$H^{\omega}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2007), pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_7_a3,
     author = {D. M. D'yachenko},
     title = {Certain constants in absolutely convergent {Fourier} series for functions from~$H^{\omega}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--47},
     publisher = {mathdoc},
     number = {7},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_7_a3/}
}
TY  - JOUR
AU  - D. M. D'yachenko
TI  - Certain constants in absolutely convergent Fourier series for functions from~$H^{\omega}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 42
EP  - 47
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_7_a3/
LA  - ru
ID  - IVM_2007_7_a3
ER  - 
%0 Journal Article
%A D. M. D'yachenko
%T Certain constants in absolutely convergent Fourier series for functions from~$H^{\omega}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 42-47
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_7_a3/
%G ru
%F IVM_2007_7_a3
D. M. D'yachenko. Certain constants in absolutely convergent Fourier series for functions from~$H^{\omega}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2007), pp. 42-47. http://geodesic.mathdoc.fr/item/IVM_2007_7_a3/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[2] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Matem. sb., 29:1 (1951), 225–232 | MR | Zbl

[3] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR

[4] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998, 159 pp.

[5] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965, 615 pp. | MR

[6] Dyachenko D. M., “O tochnykh konstantakh v absolyutno skhodyaschikhsya ryadakh Fure iz klassa $\mathrm{Lip}\,\alpha$”, Vestn. Mosk. un-ta. Ser. matem. mekhan., 2005, no. 2, 17–21 | MR