About the hypothesis on two functionals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2007), pp. 29-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_6_a3,
     author = {A. G. Gushkalova},
     title = {About the hypothesis on two functionals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--34},
     publisher = {mathdoc},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_6_a3/}
}
TY  - JOUR
AU  - A. G. Gushkalova
TI  - About the hypothesis on two functionals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 29
EP  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_6_a3/
LA  - ru
ID  - IVM_2007_6_a3
ER  - 
%0 Journal Article
%A A. G. Gushkalova
%T About the hypothesis on two functionals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 29-34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_6_a3/
%G ru
%F IVM_2007_6_a3
A. G. Gushkalova. About the hypothesis on two functionals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2007), pp. 29-34. http://geodesic.mathdoc.fr/item/IVM_2007_6_a3/

[1] Starkov V. V., “Univalent functions that are local extrema of two real functionals”, Stud. Math. Bulgaria PLISKA, 10 (1989), 16–26 | MR | Zbl

[2] Prokhorov D. V., “Koeffitsienty golomorfnykh funktsii”, J. Math. Sci., N. Y., 106 (2001), 3518–3544 | DOI | MR | Zbl

[3] Duren P. L., Univalent functions, Springer-Verlag, N. Y., 1983, 382 pp. | MR | Zbl

[4] Goh S. S., “On the two-functional conjecture for univalent functions”, Compl. Var., 20 (1992), 197–206 | MR | Zbl

[5] Schaeffer A. C., Spencer D. C., Coefficients region for schlicht functions, N. Y., 1950, 311 pp. | MR

[6] Babenko K. I., K teorii ekstremalnykh zadach dlya odnolistnykh funktsii klassa $S$, Tr. MIAN SSSR, 101, 1972, 320 pp. | MR | Zbl

[7] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl