Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_5_a5, author = {M. Yu. Kuz'min}, title = {A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {53--62}, publisher = {mathdoc}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/} }
TY - JOUR AU - M. Yu. Kuz'min TI - A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 53 EP - 62 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/ LA - ru ID - IVM_2007_5_a5 ER -
%0 Journal Article %A M. Yu. Kuz'min %T A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2007 %P 53-62 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/ %G ru %F IVM_2007_5_a5
M. Yu. Kuz'min. A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2007), pp. 53-62. http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/
[1] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975, 592 pp.
[2] Radzhagopal K. R., “O nekotorykh nereshennykh problemakh nelineinoi dinamiki zhidkostei”, UMN, 58:2 (2003), 111–122 | MR | Zbl
[3] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 376 pp. | MR | Zbl
[4] Astarita Dzh., Marruchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 309 pp.
[5] Hoppe R. H. W., Litvinov W. G., Flow of electrorhological fluids under the conditions of slip on the boundary, Institute of Mathematics, University of Augsburg, 2002, 9 pp.
[6] Eringen A. C., Nonlocal Continuum Field Theories, Springer-Verlag, 2002, 15 pp. | MR
[7] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, URSS, M., 2004, 112 pp.
[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 274 pp. | MR
[9] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Fizmatgiz, M., 1990, 265 pp. | MR
[10] Litvinov W. G., Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhäuser, 2000, 142 pp. | MR | Zbl