A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2007), pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_5_a5,
     author = {M. Yu. Kuz'min},
     title = {A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--62},
     publisher = {mathdoc},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/}
}
TY  - JOUR
AU  - M. Yu. Kuz'min
TI  - A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 53
EP  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/
LA  - ru
ID  - IVM_2007_5_a5
ER  - 
%0 Journal Article
%A M. Yu. Kuz'min
%T A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 53-62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/
%G ru
%F IVM_2007_5_a5
M. Yu. Kuz'min. A mathematical model of the motion of a nonlinear viscous fluid with the condition of slip on the boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2007), pp. 53-62. http://geodesic.mathdoc.fr/item/IVM_2007_5_a5/

[1] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975, 592 pp.

[2] Radzhagopal K. R., “O nekotorykh nereshennykh problemakh nelineinoi dinamiki zhidkostei”, UMN, 58:2 (2003), 111–122 | MR | Zbl

[3] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 376 pp. | MR | Zbl

[4] Astarita Dzh., Marruchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 309 pp.

[5] Hoppe R. H. W., Litvinov W. G., Flow of electrorhological fluids under the conditions of slip on the boundary, Institute of Mathematics, University of Augsburg, 2002, 9 pp.

[6] Eringen A. C., Nonlocal Continuum Field Theories, Springer-Verlag, 2002, 15 pp. | MR

[7] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, URSS, M., 2004, 112 pp.

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 274 pp. | MR

[9] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Fizmatgiz, M., 1990, 265 pp. | MR

[10] Litvinov W. G., Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhäuser, 2000, 142 pp. | MR | Zbl