The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2007), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_5_a4,
     author = {O. A. Dzhungurova and I. N. Volodin},
     title = {The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--52},
     publisher = {mathdoc},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_5_a4/}
}
TY  - JOUR
AU  - O. A. Dzhungurova
AU  - I. N. Volodin
TI  - The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 46
EP  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_5_a4/
LA  - ru
ID  - IVM_2007_5_a4
ER  - 
%0 Journal Article
%A O. A. Dzhungurova
%A I. N. Volodin
%T The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 46-52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_5_a4/
%G ru
%F IVM_2007_5_a4
O. A. Dzhungurova; I. N. Volodin. The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2007), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2007_5_a4/

[1] Volodin I. N., Novikov A. A., “Asimptotika neobkhodimogo ob'ema vyborki pri garantiinom razlichenii parametricheskikh gipotez”, Issledov. po prikl. matem., Sb. nauchnykh statei, no. 21, Unipress, Kazan, 1999, 3–41

[2] Borovkov A. A., Mogulskii A. A., “Bolshie ukloneniya i proverka statisticheskikh gipotez”, Tr. in-ta matem. SO RAN, 19, 1993, 1–222

[3] Volodin I. N., Dzungurova O. A., “On limit distributions emerging in the generalized Birnbaum-Saunders model”, J. Math. Sci., 99:3 (2000), 1348–1366 | DOI | MR | Zbl

[4] Volodin I. N., Dzungurova O. A., “Asymptotically optimum test for selection a partial types from a general model of fatigue crack extension”, Second Inter. Conf. on Math. Methods in Reliab., Abstr. book, V. 2 (Bordeaux, France, July 4–7, 2000), 2000, 1022–1025

[5] Hodges J. L., Lehmann E. L., “Deficiency”, Ann. Math. Statist., 41 (1970), 783–801 | DOI | MR | Zbl

[6] Chibisov D. M., “Asymptotic expansions and deficiences of tests”, Proc. Internat. Congress Math., V. 2 (Aug. 16–24, 1983, Warzawa), PWN-Polish Scientific Publishers, Warzawa; North-Holland, Amsterdam–New York–Oxford, 1984, 1063–1079 | MR

[7] Volodin I. N., “O chisle nablyudenii, neobkhodimykh dlya razlicheniya dvukh blizkikh gipotez”, Teoriya veroyat. i ee primenen., 12:3 (1967), 575–582 | MR | Zbl

[8] Linhart H., “Approximate confidence limits for the coefficient of variation of gamma distribution”, Biometrics, 21 (1965), 733–738 | DOI | MR

[9] Bain L. J., Engelhardt M., “A two moment chi-square approximations for the statistic $\log(\overline{X}/\tilde{X})$”, J. Amer. Statist. Assoc., 70 (1979), 948–950 | DOI

[10] Khmaladze E. V., “Otsenka neobkhodimogo chisla nablyudenii dlya razlicheniya prostykh sblizhayuschikhsya gipotez”, Teoriya veroyat. i ee primenen., 20 (1975), 115–125 | Zbl

[11] Jorgensen B., Seshadri V., Whitmore G. A., “On the mixture of the inverse Gaussian distribution with its complimentari reciprocal”, Scand. J. Statist., 18:1 (1991), 77–79 | MR

[12] Gupta R. C., Akman H. O., “On the reliability studies of a weighted inverse Gaussian model”, J. Statist. Plann. Inference, 48:1 (1995), 69–83 | DOI | MR | Zbl