The convexity of surfaces defined by the conformal radius of a plane domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2007), pp. 10-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_4_a1,
     author = {L. A. Aksent'ev and A. N. Akhmetova and A. V. Khmel'nitskaya},
     title = {The convexity of surfaces defined by the conformal radius of a plane domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--20},
     publisher = {mathdoc},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/}
}
TY  - JOUR
AU  - L. A. Aksent'ev
AU  - A. N. Akhmetova
AU  - A. V. Khmel'nitskaya
TI  - The convexity of surfaces defined by the conformal radius of a plane domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 10
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/
LA  - ru
ID  - IVM_2007_4_a1
ER  - 
%0 Journal Article
%A L. A. Aksent'ev
%A A. N. Akhmetova
%A A. V. Khmel'nitskaya
%T The convexity of surfaces defined by the conformal radius of a plane domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 10-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/
%G ru
%F IVM_2007_4_a1
L. A. Aksent'ev; A. N. Akhmetova; A. V. Khmel'nitskaya. The convexity of surfaces defined by the conformal radius of a plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2007), pp. 10-20. http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/

[1] Kovalev L. V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Dis. ...kand. fiz.-matem. nauk, Vladivostok, 2000, 106 pp.

[2] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR

[3] Aksentev L. A., “Vypuklost poverkhnosti konformnogo radiusa i otsenki koeffitsientov otobrazhayuschei funktsii”, Izv. vuzov. Matematika, 2004, no. 4, 8–15 | MR

[4] Kheiman V. K., Mnogolistnye funktsii, In. lit., M., 1960, 180 pp. | MR

[5] Kovalev L. V., “Domains with convex hyperbolic radius”, Acta Math. Universitatis Comenianae, 70 (2001), 207–213 | MR | Zbl

[6] Avkhadiev F. G., Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. of math., 145 (2005), 349–374 | DOI | MR | Zbl