Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_4_a1, author = {L. A. Aksent'ev and A. N. Akhmetova and A. V. Khmel'nitskaya}, title = {The convexity of surfaces defined by the conformal radius of a plane domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--20}, publisher = {mathdoc}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/} }
TY - JOUR AU - L. A. Aksent'ev AU - A. N. Akhmetova AU - A. V. Khmel'nitskaya TI - The convexity of surfaces defined by the conformal radius of a plane domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 10 EP - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/ LA - ru ID - IVM_2007_4_a1 ER -
%0 Journal Article %A L. A. Aksent'ev %A A. N. Akhmetova %A A. V. Khmel'nitskaya %T The convexity of surfaces defined by the conformal radius of a plane domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2007 %P 10-20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/ %G ru %F IVM_2007_4_a1
L. A. Aksent'ev; A. N. Akhmetova; A. V. Khmel'nitskaya. The convexity of surfaces defined by the conformal radius of a plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2007), pp. 10-20. http://geodesic.mathdoc.fr/item/IVM_2007_4_a1/
[1] Kovalev L. V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Dis. ...kand. fiz.-matem. nauk, Vladivostok, 2000, 106 pp.
[2] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR
[3] Aksentev L. A., “Vypuklost poverkhnosti konformnogo radiusa i otsenki koeffitsientov otobrazhayuschei funktsii”, Izv. vuzov. Matematika, 2004, no. 4, 8–15 | MR
[4] Kheiman V. K., Mnogolistnye funktsii, In. lit., M., 1960, 180 pp. | MR
[5] Kovalev L. V., “Domains with convex hyperbolic radius”, Acta Math. Universitatis Comenianae, 70 (2001), 207–213 | MR | Zbl
[6] Avkhadiev F. G., Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. of math., 145 (2005), 349–374 | DOI | MR | Zbl