Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2007), pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_3_a8,
     author = {V. P. Tanana and M. G. Bulatova},
     title = {Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--72},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_3_a8/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - M. G. Bulatova
TI  - Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 65
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_3_a8/
LA  - ru
ID  - IVM_2007_3_a8
ER  - 
%0 Journal Article
%A V. P. Tanana
%A M. G. Bulatova
%T Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 65-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_3_a8/
%G ru
%F IVM_2007_3_a8
V. P. Tanana; M. G. Bulatova. Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2007), pp. 65-72. http://geodesic.mathdoc.fr/item/IVM_2007_3_a8/

[2] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, Zhurn. vychisl. matem. i matem. fiz., 20:4 (1980), 819–826 | MR | Zbl

[3] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorretnykh zadach s razryvnymi resheniyami”, Zhurn. vychisl. matem. i matem. fiz., 22:3 (1982), 516–531 | MR | Zbl

[4] Vasin V. A., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 261 pp. | MR

[5] Ivanov V. K., Korolyuk T. I., “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 9:1 (1969), 30–41 | Zbl

[6] Lavrentev M. M., Uslovno-korrektnye zadachi dlya differentsialnykh uravnenii, NGU, Novosibirsk, 1973, 90 pp.

[7] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[8] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981, 160 pp. | MR

[9] Tanana V. P., “O novom podkhode k otsenke pogreshnosti metodov resheniya nekorrektno postavlennykh zadach”, Sib. zhurn. industr. matem., 5:4 (2002), 150–163 | MR | Zbl

[10] Tanana V. P., “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | MR | Zbl

[11] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Fizmatgiz, M., 1961, 524 pp.

[12] Menikhes L. D., Tanana V. P., “Konechnomernaya approksimatsiya v metode M. M. Lavrenteva”, Sib. zhurn. vychisl. matem., 1:1 (1998), 59–66 | MR

[13] Tanana V. P., Danilin A. R., “Ob optimalnosti regulyarizuyuschikh algoritmov pri reshenii nekorrektnykh zadach”, Differents. uravneniya, 12:7 (1976), 1323–1326 | MR | Zbl

[14] Vasin V. V., “Regulyarizatsiya zadachi chislennogo differentsirovaniya”, Matem. zap. Uralsk. un-ta, 7:2 (1969), 29–33 | MR | Zbl

[15] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999, 238 pp.

[16] Khromova G. V., “Ob otsenke pogreshnosti priblizhennogo resheniya uravneniya pervogo roda”, Dokl. RAN, 378:5 (2001), 605–609 | MR | Zbl