Elongation and rotation of a linear element under the continuum deformation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2007), pp. 47-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_3_a5,
     author = {A. P. Loktionov},
     title = {Elongation and rotation of a linear element under the continuum deformation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--50},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_3_a5/}
}
TY  - JOUR
AU  - A. P. Loktionov
TI  - Elongation and rotation of a linear element under the continuum deformation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 47
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_3_a5/
LA  - ru
ID  - IVM_2007_3_a5
ER  - 
%0 Journal Article
%A A. P. Loktionov
%T Elongation and rotation of a linear element under the continuum deformation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 47-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_3_a5/
%G ru
%F IVM_2007_3_a5
A. P. Loktionov. Elongation and rotation of a linear element under the continuum deformation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2007), pp. 47-50. http://geodesic.mathdoc.fr/item/IVM_2007_3_a5/

[1] Zubchaninov V. G., Osnovy teorii uprugosti i plastichnosti, Vyssh. shkola, M., 1990, 368 pp.

[2] Gorshkov A. G., Starovoitov E. I., Tarlakovskii D. V., Teoriya uprugosti i plastichnosti, Fizmatlit, M., 2002, 416 pp.

[3] Pobedrya B. E., Georgievskii D. V., Lektsii po teorii uprugosti, Editorial URSS, M., 1999, 208 pp.

[4] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[5] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975, 576 pp.