Invertible linear relations generated by a uniformly well-posed problem and a nonnegative operator function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2007), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_1_a0,
     author = {V. M. Bruk},
     title = {Invertible linear relations generated by a uniformly well-posed problem and a nonnegative operator function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_1_a0/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - Invertible linear relations generated by a uniformly well-posed problem and a nonnegative operator function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_1_a0/
LA  - ru
ID  - IVM_2007_1_a0
ER  - 
%0 Journal Article
%A V. M. Bruk
%T Invertible linear relations generated by a uniformly well-posed problem and a nonnegative operator function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_1_a0/
%G ru
%F IVM_2007_1_a0
V. M. Bruk. Invertible linear relations generated by a uniformly well-posed problem and a nonnegative operator function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2007), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2007_1_a0/

[1] Coddington E. A., “Extension theory of formally normal and symmetric subspaces”, Mem. Amer. Math. Soc., 134, 1973, 1–80 | MR

[2] Bruk V. M., “O chisle lineino nezavisimykh, kvadratichno integriruemykh reshenii sistem differentsialnykh uravnenii”, Funktsionalnyi analiz, no. 5, Ulyanovsk. pedinstitut, Ulyanovsk, 1975, 25–33

[3] Lee S. J., “Formally self-adjoint systems of differential operators”, J. Math. Anal. Appl., 55 (1976), 90–101 | DOI | MR | Zbl

[4] Khrabustovskii V. I., “Spektralnyi analiz periodicheskikh sistem s vyrozhdayuschimsya vesom na osi i poluosi”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 44, Kharkovskii gosudarstvennyi universitet, Kharkov, 1985, 122–133 | MR

[5] Bruk V. M., “O lineinykh otnosheniyakh v prostranstve vektor-funktsii”, Matem. zametki, 24:4 (1978), 499–511 | MR | Zbl

[6] Bruk V. M., “Obobschennye rezolventy simmetricheskikh otnoshenii v prostranstve vektor-funktsii”, Funktsionalnyi analiz, no. 26, Ulyanovskii pedinstitut, Ulyanovsk, 1986, 52–61 | MR

[7] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Nauk. dumka, Kiev, 1984, 284 pp. | MR | Zbl

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971, 372 pp. | Zbl

[9] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[10] Rofe-Beketov F. S., Kholkin A. M., Spektralnyi analiz differentsialnykh operatorov, Fiziko-tekhnicheskii institut nizkikh temperatur NAN Ukrainy, Mariupol, 2001, 332 pp.

[11] Kogan V. I., Rofe-Beketov F. S., O kvadratichno integriruemykh resheniyakh simmetricheskikh sistem differentsialnykh uravnenii proizvolnogo poryadka, Preprint, Fiziko-tekhnicheskii institut nizkikh temperatur AN USSR, Kharkov, 1973, 60 pp.

[12] Bruk V. M., “O kraevykh zadachakh, svyazannykh s golomorfnymi semeistvami operatorov”, Funktsionalnyi analiz, no. 29, Ulyanovskii pedinstitut, Ulyanovsk, 1989, 32–42 | MR