Solution of a nonlocal problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain by the spectral method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2007), pp. 36-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_11_a4,
     author = {L. Kh. Rakhmanova},
     title = {Solution of a nonlocal problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain by the spectral method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--40},
     publisher = {mathdoc},
     number = {11},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_11_a4/}
}
TY  - JOUR
AU  - L. Kh. Rakhmanova
TI  - Solution of a nonlocal problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain by the spectral method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 36
EP  - 40
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_11_a4/
LA  - ru
ID  - IVM_2007_11_a4
ER  - 
%0 Journal Article
%A L. Kh. Rakhmanova
%T Solution of a nonlocal problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain by the spectral method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 36-40
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_11_a4/
%G ru
%F IVM_2007_11_a4
L. Kh. Rakhmanova. Solution of a nonlocal problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain by the spectral method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2007), pp. 36-40. http://geodesic.mathdoc.fr/item/IVM_2007_11_a4/

[1] Gelfand I. M., “Nekotorye voprosy analiza i differentsialnykh uravnenii”, UMN, 14:3 (1959), 3–19 | MR

[2] Struchina G. M., “Zadacha o sopryazhenii dvukh uravnenii”, Inzh.-fiz. zhurn., 4:11 (1961), 99–104

[3] Uflyand Ya. S., “K voprosu o rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, Inzh.-fiz. zhurn., 7:1 (1964), 89–92

[4] Zolina L. A., “O kraevoi zadache dlya modelnogo uravneniya giperbolo-parabolicheskogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 6:6 (1966), 991–1001 | MR

[5] Nakhushev A. M., Bzhikhatlov Kh. G., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo tipa”, DAN SSSR, 183:2 (1968), 261–264 | Zbl

[6] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979, 238 pp. | MR | Zbl

[7] Dzhuraev T. D., Sopuev A., Mamazhanov M., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Fan, Tashkent, 1986, 220 pp. | MR | Zbl

[8] Sabitov K. B., “K teorii uravnenii smeshannogo parabolo-giperbolicheskogo tipa so spektralnym parametrom”, Differents. uravneniya, 25:1 (1989), 117–126 | MR | Zbl

[9] Lerner M. E., Repin O. A., “Ob odnoi zadache s dvumya nelokalnymi kraevymi usloviyami dlya uravneniya smeshannogo tipa”, Sib. matem. zhurn., 40:6 (1999), 1260–1275 | MR | Zbl

[10] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl

[11] Sabitov K. B., Sidorenko O. G., “Nelokalnaya zadacha dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Sovremennye problemy fiziki i matematiki, Tr. Vserossiisk. nauch. konf., T. 1 (Sterlitamak), Gilem, Ufa, 2004, 80–86

[12] Sabitov K. B., Sidorenko O. G., “Ob odnoznachnoi razreshimosti nelokalnoi zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya spektralnym metodom”, Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy, Tr. mezhdunarodn. nauch. konf., T. 1 (Sterlitamak), Gilem, Ufa, 2003, 213–219

[13] Sabitov K. B., Uravneniya matematicheskoi fiziki, Vyssh. shkola, M., 2003, 256 pp.