Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_10_a1, author = {J. R. Arteaga Bejarano and M. A. Malakhaltsev}, title = {Infinitesimal {Ricci} flows of minimal surfaces in the three-dimensional {Euclidean} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {29--39}, publisher = {mathdoc}, number = {10}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_10_a1/} }
TY - JOUR AU - J. R. Arteaga Bejarano AU - M. A. Malakhaltsev TI - Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 29 EP - 39 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_10_a1/ LA - ru ID - IVM_2007_10_a1 ER -
%0 Journal Article %A J. R. Arteaga Bejarano %A M. A. Malakhaltsev %T Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2007 %P 29-39 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2007_10_a1/ %G ru %F IVM_2007_10_a1
J. R. Arteaga Bejarano; M. A. Malakhaltsev. Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2007), pp. 29-39. http://geodesic.mathdoc.fr/item/IVM_2007_10_a1/
[1] Chow B., Knopf D., The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[2] Bennett Chow, Sun-Chin Chu, Chia-Yi, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, Lei Ni, The Ricci flow: techniques and applications. Part I. Geometric aspects, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007 | MR | Zbl
[3] Zhu Xi-Ping, Lectures on mean curvature flows, AMS/IP Studies in Advanced Mathematics, 32, American Mathematical Society, Providence, RI; International Press, Somerville, 2002, ix, 150 p. | MR | Zbl
[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979, 759 pp. | MR
[5] Taylor M. E., Partial differential equations. III. Nonlinear equations, Springer-Verlag, 1996, 608 pp. | MR
[6] Carstea S. A., Visinescu M., “Special solutions for Ricci flow equation in 2D using the linearization approach”, Mod. Phys. Lett. A, 20:39 (2005), 2993–3002 ; http://arxiv.org/abs/hep-th/0506113 | DOI | MR | Zbl
[7] Hamilton R. S., “Three-manifolds with positive Ricci curvature”, J. Differential Geom., 17:2 (1982), 255–306 | MR | Zbl
[8] DeTurck D. M., “Deforming metrics in the direction of their Ricci tensor”, J. Differential Geom., 18:1 (1983), 157–162 | MR | Zbl
[9] Kagan V. F., Osnovy teorii poverkhnostei v tenzornom izlozhenii. Ch. 1. Apparat issledovaniya, obschie osnovaniya teorii i vnutrennyaya geometriya poverkhnosti, T. I, Gostekhizdat, M.–L., 1947, 512 pp. | MR
[10] Norden A. P., Teoriya poverkhnostei, Gostekhizdat, M., 1956, 260 pp. | MR
[11] Rubinstein J., Sinclair R., “Visualizing Ricci flow of manifolds of revolution”, Experimental Mathematics, 14 (2005), 285–298 | MR | Zbl
[12] Fomenko V. T., “Ob odnom svoistve konformnykh beskonechno malykh deformatsii mnogomernykh poverkhnostei v rimanovom prostranstve”, Matem. zametki, 59:2 (1996), 284–290 | MR | Zbl
[13] Fomenko V. T., “Ob odnom analoge teoremy Zauera”, Matem. zametki, 74:3–4 (2003), 463–470 | MR | Zbl
[14] Blyashke V., Vvedenie v differentsialnuyu geometriyu, Gostekhizdat, M., 1957, 223 pp.
[15] Palais R. S., Terng Chuu-lian, Critical point theory and submanifold geometry, Lecture Notes in Math., 1353, 1988 | MR | Zbl