On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2006), pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_9_a8,
     author = {E. A. Turilova},
     title = {On some classes of subspaces affiliated with a von {Neumann} algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--66},
     publisher = {mathdoc},
     number = {9},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/}
}
TY  - JOUR
AU  - E. A. Turilova
TI  - On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 58
EP  - 66
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/
LA  - ru
ID  - IVM_2006_9_a8
ER  - 
%0 Journal Article
%A E. A. Turilova
%T On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 58-66
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/
%G ru
%F IVM_2006_9_a8
E. A. Turilova. On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2006), pp. 58-66. http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/

[1] Turilova E. A., “Svoistva zamknutykh podprostranstv unitarnogo prostranstva, prisoedinennogo k algebre fon Neimana”, Algebra i analiz, Tez. dokl. shkoly-konf., Izd-vo Kazansk. matem. o-va, Kazan, 1997, 219–220

[2] Sherstnev A. N., Turilova E. A., “Classes of subspaces affiliated with a von Neumann algebra”, Russian J. of Math. Physics, 6:4 (1999), 426–434 | MR | Zbl

[3] Sherstnev A. N., “Kazhdyi gladkii ves yavlyaetsya $l$-vesom”, Izv. vuzov. Matem., 1977, no. 8, 88–91 | Zbl

[4] Takesaki M., “Teoriya Tomita modulyarnykh gilbertovykh algebr i ee prilozheniya”, Matematika. Sb. perevodov, 18:3 (1974), 83–122 | Zbl

[5] Takesaki M., “Teoriya Tomita modulyarnykh gilbertovykh algebr i ee prilozheniya”, Matematika. Sb. perevodov, 18:4 (1974), 34–64

[6] Pedersen G. K., Takesaki M., “The Radon–Nykodim theorem for Neumann algebras”, Acta math., 130:1–2 (1973), 53–87 | DOI | MR | Zbl

[7] Dorofeev S. V., Sherstnev A. N., “Funktsii repernogo tipa i ikh primeneniya”, Izv. vuzov. Matematika, 1990, no. 4, 23–29 | MR | Zbl