Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_9_a8, author = {E. A. Turilova}, title = {On some classes of subspaces affiliated with a von {Neumann} algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {58--66}, publisher = {mathdoc}, number = {9}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/} }
TY - JOUR AU - E. A. Turilova TI - On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 58 EP - 66 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/ LA - ru ID - IVM_2006_9_a8 ER -
%0 Journal Article %A E. A. Turilova %T On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 58-66 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/ %G ru %F IVM_2006_9_a8
E. A. Turilova. On some classes of subspaces affiliated with a von Neumann algebra in the representation space of the algebra ${\mathscr B}(H)$ associated with a weight. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2006), pp. 58-66. http://geodesic.mathdoc.fr/item/IVM_2006_9_a8/
[1] Turilova E. A., “Svoistva zamknutykh podprostranstv unitarnogo prostranstva, prisoedinennogo k algebre fon Neimana”, Algebra i analiz, Tez. dokl. shkoly-konf., Izd-vo Kazansk. matem. o-va, Kazan, 1997, 219–220
[2] Sherstnev A. N., Turilova E. A., “Classes of subspaces affiliated with a von Neumann algebra”, Russian J. of Math. Physics, 6:4 (1999), 426–434 | MR | Zbl
[3] Sherstnev A. N., “Kazhdyi gladkii ves yavlyaetsya $l$-vesom”, Izv. vuzov. Matem., 1977, no. 8, 88–91 | Zbl
[4] Takesaki M., “Teoriya Tomita modulyarnykh gilbertovykh algebr i ee prilozheniya”, Matematika. Sb. perevodov, 18:3 (1974), 83–122 | Zbl
[5] Takesaki M., “Teoriya Tomita modulyarnykh gilbertovykh algebr i ee prilozheniya”, Matematika. Sb. perevodov, 18:4 (1974), 34–64
[6] Pedersen G. K., Takesaki M., “The Radon–Nykodim theorem for Neumann algebras”, Acta math., 130:1–2 (1973), 53–87 | DOI | MR | Zbl
[7] Dorofeev S. V., Sherstnev A. N., “Funktsii repernogo tipa i ikh primeneniya”, Izv. vuzov. Matematika, 1990, no. 4, 23–29 | MR | Zbl