On conditions for the solvability of a system of linear Diophantine equations in prime numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2006), pp. 10-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{IVM_2006_9_a1,
     author = {I. A. Allakov},
     title = {On conditions for the solvability of a system of linear {Diophantine} equations in prime numbers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--16},
     year = {2006},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_9_a1/}
}
TY  - JOUR
AU  - I. A. Allakov
TI  - On conditions for the solvability of a system of linear Diophantine equations in prime numbers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 10
EP  - 16
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_9_a1/
LA  - ru
ID  - IVM_2006_9_a1
ER  - 
%0 Journal Article
%A I. A. Allakov
%T On conditions for the solvability of a system of linear Diophantine equations in prime numbers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 10-16
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2006_9_a1/
%G ru
%F IVM_2006_9_a1
I. A. Allakov. On conditions for the solvability of a system of linear Diophantine equations in prime numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2006), pp. 10-16. http://geodesic.mathdoc.fr/item/IVM_2006_9_a1/

[1] Wu Fang, “On the solutions of the systems of linear equations with prime variables”, Acta Math. Sinica, 7 (1957), 102–121

[2] Liu M. C., Tsang K. M., “On pairs of linear equations in three prime variables and application to Goldbach's problem”, J. reine angew. Math., 399 (1989), 109–136 | MR | Zbl

[3] Khua-Lo-Gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964, 188 pp. | MR

[4] Allakov I. A., “O razreshimosti pary lineinykh uravnenii s tremya prostymi peremennymi”, Uzb. matem. zhurn., 1993, no. 1, 26–34

[5] Allakov I. A., Israilov M. I., “About simultaneous representation of two natural numbers by sum of three primes”, Lect. of The Third Internat. Workshop of Comput. Algebra in Scien. Comput., CASC, Springer, 2000, 13–20 | MR | Zbl