An estimate for the rate of convergence of Fourier--Legendre series of functions of bounded variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2006), pp. 34-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_7_a3,
     author = {D. V. Kurdomonov},
     title = {An estimate for the rate of convergence of {Fourier--Legendre} series of functions of bounded variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--45},
     publisher = {mathdoc},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/}
}
TY  - JOUR
AU  - D. V. Kurdomonov
TI  - An estimate for the rate of convergence of Fourier--Legendre series of functions of bounded variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 34
EP  - 45
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/
LA  - ru
ID  - IVM_2006_7_a3
ER  - 
%0 Journal Article
%A D. V. Kurdomonov
%T An estimate for the rate of convergence of Fourier--Legendre series of functions of bounded variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 34-45
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/
%G ru
%F IVM_2006_7_a3
D. V. Kurdomonov. An estimate for the rate of convergence of Fourier--Legendre series of functions of bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2006), pp. 34-45. http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/

[1] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.–L., 1949, 688 pp. | MR

[2] Gobson E. V., Teoriya sfericheskikh i ellipsoidalnykh funktsii, In. lit., M., 1952, 476 pp.

[3] Bojanic R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publications de l`institut mathématique (Beograd), 26(40) (1979), 57–60 | MR | Zbl

[4] Bojanic R., Vuilleumier M., “On the rate of convergence of Fourier–Legendre series of functions of bounded variation”, J. Approx. Theory, 31 (1981), 67–79 | DOI | MR | Zbl

[5] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[6] Telyakovskii S. A., “O skorosti skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Matem. zametki, 72 (2002), 949–953 | MR

[7] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 416 pp. | MR | Zbl

[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. II, Nauka, M., 1970, 800 pp.

[9] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378—386 | MR