@article{IVM_2006_7_a3,
author = {D. V. Kurdomonov},
title = {An estimate for the rate of convergence of {Fourier{\textendash}Legendre} series of functions of bounded variation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {34--45},
year = {2006},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/}
}
TY - JOUR AU - D. V. Kurdomonov TI - An estimate for the rate of convergence of Fourier–Legendre series of functions of bounded variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 34 EP - 45 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/ LA - ru ID - IVM_2006_7_a3 ER -
D. V. Kurdomonov. An estimate for the rate of convergence of Fourier–Legendre series of functions of bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2006), pp. 34-45. http://geodesic.mathdoc.fr/item/IVM_2006_7_a3/
[1] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.–L., 1949, 688 pp. | MR
[2] Gobson E. V., Teoriya sfericheskikh i ellipsoidalnykh funktsii, In. lit., M., 1952, 476 pp.
[3] Bojanic R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publications de l`institut mathématique (Beograd), 26(40) (1979), 57–60 | MR | Zbl
[4] Bojanic R., Vuilleumier M., “On the rate of convergence of Fourier–Legendre series of functions of bounded variation”, J. Approx. Theory, 31 (1981), 67–79 | DOI | MR | Zbl
[5] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR
[6] Telyakovskii S. A., “O skorosti skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Matem. zametki, 72 (2002), 949–953 | MR
[7] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 416 pp. | MR | Zbl
[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. II, Nauka, M., 1970, 800 pp.
[9] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378—386 | MR