On the duality of the partial and conditional stability of linear functional-differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2006), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_5_a8,
     author = {K. M. Chudinov},
     title = {On the duality of the partial and conditional stability of linear functional-differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--82},
     publisher = {mathdoc},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_5_a8/}
}
TY  - JOUR
AU  - K. M. Chudinov
TI  - On the duality of the partial and conditional stability of linear functional-differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 73
EP  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_5_a8/
LA  - ru
ID  - IVM_2006_5_a8
ER  - 
%0 Journal Article
%A K. M. Chudinov
%T On the duality of the partial and conditional stability of linear functional-differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 73-82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_5_a8/
%G ru
%F IVM_2006_5_a8
K. M. Chudinov. On the duality of the partial and conditional stability of linear functional-differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2006), pp. 73-82. http://geodesic.mathdoc.fr/item/IVM_2006_5_a8/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[2] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001, 230 pp.

[3] Chudinov K. M., “Ob ustoichivosti po podprostranstvu reshenii lineinykh sistem s peremennym zapazdyvaniem”, Izv. vuzov. Matematika, 2006, no. 4, 51–56 | MR | Zbl

[4] Vorotnikov V. I., Ustoichivost dinamicheskikh sistem po otnosheniyu k chasti peremennykh, Nauka, M., 1991, 288 pp. | MR | Zbl

[5] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchnyi mir, M., 2001, 320 pp. | MR | Zbl

[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998, 480 pp. | MR