The Cauchy function for a functional-differential equation in a Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2006), pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_5_a4,
     author = {E. S. Zhukovskii},
     title = {The {Cauchy} function for a functional-differential equation in a {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--47},
     publisher = {mathdoc},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_5_a4/}
}
TY  - JOUR
AU  - E. S. Zhukovskii
TI  - The Cauchy function for a functional-differential equation in a Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 38
EP  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_5_a4/
LA  - ru
ID  - IVM_2006_5_a4
ER  - 
%0 Journal Article
%A E. S. Zhukovskii
%T The Cauchy function for a functional-differential equation in a Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 38-47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_5_a4/
%G ru
%F IVM_2006_5_a4
E. S. Zhukovskii. The Cauchy function for a functional-differential equation in a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2006), pp. 38-47. http://geodesic.mathdoc.fr/item/IVM_2006_5_a4/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[2] Azbelev N. V., “K voprosu o regulyarizuemosti singulyarnykh uravnenii”, Vestn. PTGU. Matem. i prikl. matem., no. 1, Izd-vo Permsk. tekhn. un-ta, Perm, 1996, 5–27

[3] Azbelev N. V., Rakhmatullina L. F., “Abstraktnye funktsionalno-differentsialnye uravneniya”, Funktsionalno-differents. uravneniya, Izd-vo Permskogo politekhn. in-ta, Perm, 1987, 3–11 | MR

[4] Anokhin A. V., K obschei teorii lineinykh funktsionalno-differentsialnykh uravnenii, Dep. v VINITI 18.03.81, No 1389–81, Perm. politekhn. in-t, Perm, 1981, 31 pp.

[5] Kultyshev S. Yu., Tonkov E. L., “Upravlyaemost lineinoi nestatsionarnoi sistemy”, Differents. uravneniya, 11:7 (1975), 1206–1216 | MR | Zbl

[6] Maksimov V. P., “O formule Koshi dlya funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 13:4 (1977), 601–606 | MR | Zbl

[7] Zhukovskii E. S., “K teorii uravnenii Volterra”, Differents. uravneniya, 25:9 (1989), 1599–1605 | MR

[8] Zhukovskii E. S., “Volterrovost i spektralnye svoistva operatora vnutrennei superpozitsii”, Differents. uravneniya, 30:2 (1994), 250–255 | MR

[9] Zhukovskii E. S., “Ob operatorakh Volterra v banakhovykh funktsionalnykh prostranstvakh”, Vestn. TGU, 6:2 (2001), 147–149

[10] Zhukovskii E. S., Lineinye evolyutsionnye funktsionalno-differentsialnye uravneniya v banakhovom prostranstve, Izd-vo Tambovsk. un-ta im. G. R. Derzhavina, Tambov, 2003, 148 pp.

[11] Bakhvalov N. S., Chislennye metody, Ch. 1, Nauka, M., 1975, 632 pp.

[12] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1972, 476 pp.

[13] Efremov A. A., Priblizhennoe reshenie lineinykh uravnenii s zapazdyvayuschim argumentom, Dis. ...kand. fiz.-matem. nauk, Perm, 1983, 114 pp. | Zbl

[14] Zhukovskaya T. V., Volterrovost operatorov i chislennoe reshenie funktsionalno-differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Perm, 1990, 140 pp.

[15] Yuganova S. A., K voprosu o priblizhennom postroenii operatora Koshi, Dep. v VINITI, No 3820–81, Perm. politekhn. in-t, Perm, 1981, 11 pp.