Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_4_a4, author = {O. I. Makhmudov and I. \'E. Niezov}, title = {On the {Cauchy} problem for a multidimensional system of {Lam\'e} equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--50}, publisher = {mathdoc}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/} }
TY - JOUR AU - O. I. Makhmudov AU - I. É. Niezov TI - On the Cauchy problem for a multidimensional system of Lam\'e equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 41 EP - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/ LA - ru ID - IVM_2006_4_a4 ER -
O. I. Makhmudov; I. É. Niezov. On the Cauchy problem for a multidimensional system of Lam\'e equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2006), pp. 41-50. http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/
[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR
[2] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR
[3] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR
[4] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | Zbl
[5] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii termouprugosti v prostranstve”, Matem. zametki, 64:2 (1998), 212–217 | MR | Zbl
[6] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Dis. ... kand. fiz.-matem. nauk, Novosibirsk, 1990, 80 pp.
[7] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Matematika, 1994, no. 1, 54–61 | MR | Zbl
[8] Makhmudov O. I., Niëzov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii teorii uprugosti v peremescheniyakh”, Sib. matem. zhurn., 39:2 (1998), 369–376 | MR | Zbl
[9] Makhmudov O. I., Niëzov I. E., “Ob odnoi zadache Koshi dlya sistemy uravnenii teorii uprugosti”, Differents. uravneniya, 36:5 (2000), 674–678 | MR | Zbl
[10] Makhmudov O. I., Niëzov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy teorii uprugosti”, Matem. zametki, 68:4 (2000), 548–553 | MR | Zbl
[11] Makhmudov O. I., Niëzov I. E., “Zadacha Koshi dlya sistemy teorii uprugosti v beskonechnoi oblasti”, Uzb. matem. zhurn., 1999, no. 2, 34–39 | MR
[12] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii momentnoi teorii uprugosti v prostranstve”, Uzb. matem. zhurn., 1996, no. 1, 22–30 | MR
[13] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961, 400 pp. | MR
[14] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[15] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl
[16] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zhurn., 33:1 (1992), 186–190 | MR
[17] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | MR
[18] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[19] Kupradze V. D., Burchuladze T. V., Gegeliya T. G., Basheleishvili M. O., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Klassicheskaya i mikropolyarnaya teoriya. Statika, garmonicheskie kolebaniya, dinamika. Osnovy i metody resheniya, Nauka, M., 1976, 664 pp. | MR
[20] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966, 671 pp.
[21] Yarmukhamedov Sh. Ya., O zadache Koshi dlya uravneniya Laplasa, Dis. ...dokt. fiz.-matem. nauk, Novosibirsk, 1983, 206 pp.