On the Cauchy problem for a multidimensional system of Lam\'e equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2006), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_4_a4,
     author = {O. I. Makhmudov and I. \'E. Niezov},
     title = {On the {Cauchy} problem for a multidimensional system of {Lam\'e} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--50},
     publisher = {mathdoc},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/}
}
TY  - JOUR
AU  - O. I. Makhmudov
AU  - I. É. Niezov
TI  - On the Cauchy problem for a multidimensional system of Lam\'e equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 41
EP  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/
LA  - ru
ID  - IVM_2006_4_a4
ER  - 
%0 Journal Article
%A O. I. Makhmudov
%A I. É. Niezov
%T On the Cauchy problem for a multidimensional system of Lam\'e equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 41-50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/
%G ru
%F IVM_2006_4_a4
O. I. Makhmudov; I. É. Niezov. On the Cauchy problem for a multidimensional system of Lam\'e equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2006), pp. 41-50. http://geodesic.mathdoc.fr/item/IVM_2006_4_a4/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR

[2] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR

[3] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR

[4] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | Zbl

[5] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii termouprugosti v prostranstve”, Matem. zametki, 64:2 (1998), 212–217 | MR | Zbl

[6] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Dis. ... kand. fiz.-matem. nauk, Novosibirsk, 1990, 80 pp.

[7] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Matematika, 1994, no. 1, 54–61 | MR | Zbl

[8] Makhmudov O. I., Niëzov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii teorii uprugosti v peremescheniyakh”, Sib. matem. zhurn., 39:2 (1998), 369–376 | MR | Zbl

[9] Makhmudov O. I., Niëzov I. E., “Ob odnoi zadache Koshi dlya sistemy uravnenii teorii uprugosti”, Differents. uravneniya, 36:5 (2000), 674–678 | MR | Zbl

[10] Makhmudov O. I., Niëzov I. E., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy teorii uprugosti”, Matem. zametki, 68:4 (2000), 548–553 | MR | Zbl

[11] Makhmudov O. I., Niëzov I. E., “Zadacha Koshi dlya sistemy teorii uprugosti v beskonechnoi oblasti”, Uzb. matem. zhurn., 1999, no. 2, 34–39 | MR

[12] Ishankulov T. I., Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii momentnoi teorii uprugosti v prostranstve”, Uzb. matem. zhurn., 1996, no. 1, 22–30 | MR

[13] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961, 400 pp. | MR

[14] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[15] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[16] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zhurn., 33:1 (1992), 186–190 | MR

[17] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | MR

[18] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[19] Kupradze V. D., Burchuladze T. V., Gegeliya T. G., Basheleishvili M. O., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Klassicheskaya i mikropolyarnaya teoriya. Statika, garmonicheskie kolebaniya, dinamika. Osnovy i metody resheniya, Nauka, M., 1976, 664 pp. | MR

[20] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966, 671 pp.

[21] Yarmukhamedov Sh. Ya., O zadache Koshi dlya uravneniya Laplasa, Dis. ...dokt. fiz.-matem. nauk, Novosibirsk, 1983, 206 pp.