Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_3_a7, author = {B. A. Shuvar and M. I. Kopach}, title = {A sufficient condition for the existence of a solution of an equation with nonmonotone operators}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {59--61}, publisher = {mathdoc}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_3_a7/} }
TY - JOUR AU - B. A. Shuvar AU - M. I. Kopach TI - A sufficient condition for the existence of a solution of an equation with nonmonotone operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 59 EP - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_3_a7/ LA - ru ID - IVM_2006_3_a7 ER -
%0 Journal Article %A B. A. Shuvar %A M. I. Kopach %T A sufficient condition for the existence of a solution of an equation with nonmonotone operators %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 59-61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_3_a7/ %G ru %F IVM_2006_3_a7
B. A. Shuvar; M. I. Kopach. A sufficient condition for the existence of a solution of an equation with nonmonotone operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2006), pp. 59-61. http://geodesic.mathdoc.fr/item/IVM_2006_3_a7/
[1] Tarski A., “A lattice theoretical fixpoit theorem and its applications”, Pacif. J. Math., 5:2 (1995), 285–309 | MR
[2] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961, 407 pp. | MR
[3] Kurpel N. S., Gresko E. V., “Ob odnom obobschenii teoremy A. Tarskogo o nepodvizhnoi tochke”, Izv. vuzov. Matematika, 1978, no. 5, 135–137 | MR | Zbl
[4] Kurpel N. S., Shuvar B. A., Dvustoronnie operatornye neravenstva i ikh primenenie, Nauk. dumka, Kiev, 1980, 267 pp. | MR | Zbl
[5] Shuvar B. A., “Dvustoronnie iteratsionnye metody resheniya nelineinykh uravnenii v poluuporyadochennykh prostranstvakh”, Vtoroi simpozium po metodam resheniya nelineinykh uravnenii i zaoptimizatsii, T. 1, In-t kibernetiki AN ESSR, Tallin, 1981, 68–73