Two-sided estimates for the $L^p$-norms of the stress function for convex domains in ${\mathbb R}^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2006), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_3_a5,
     author = {R. G. Salakhudinov},
     title = {Two-sided estimates for the $L^p$-norms of the stress function for convex domains in ${\mathbb R}^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--49},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_3_a5/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Two-sided estimates for the $L^p$-norms of the stress function for convex domains in ${\mathbb R}^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 41
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_3_a5/
LA  - ru
ID  - IVM_2006_3_a5
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Two-sided estimates for the $L^p$-norms of the stress function for convex domains in ${\mathbb R}^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 41-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_3_a5/
%G ru
%F IVM_2006_3_a5
R. G. Salakhudinov. Two-sided estimates for the $L^p$-norms of the stress function for convex domains in ${\mathbb R}^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2006), pp. 41-49. http://geodesic.mathdoc.fr/item/IVM_2006_3_a5/

[1] Polia G., Sege G., Izoperimetricheskie neravenstva matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp.

[2] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[3] Salahudinov R. G., “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequal. and Appl., 6 (2001), 253–260 | DOI | MR | Zbl

[4] Bañuelos R., van den Berg M., Carroll T., “Torsional rigidity and expected lifetime of Brownian motion”, J. London Math. Soc. (2), 66 (2002), 499–512 | DOI | MR | Zbl

[5] Davies E. B., “A review of Hardy inequalities”, Operation Theory: Advances and Applications, 110 (1999), 55–67 | MR | Zbl

[6] Bandle C., Flucher M., “Harmonic radius and concentration of energy hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U=U^{\frac{n+2}{n-2}}$”, SIAM Review, 38:2 (1996), 191–238 | DOI | MR | Zbl

[7] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbbourne, 1980, 228 pp. | MR | Zbl

[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. III, Fizmatgiz, M.–L., 1960, 656 pp.

[9] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 496 pp. | MR | Zbl

[10] Avkhadiev F. G., “Osobennosti sfericheskikh potentsialov”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 5, Kazan, 2000, 9–11

[11] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays presented to R. Courant on his 60th birthday, Interscience publ., N.Y., 1948, 187–204 | MR

[12] Salakhudinov R. G., “Izoperimetricheskaya monotonnost nekotorykh fizicheskikh i geometricheskikh funktsionalov”, Tr. po geometrii i analizu, Izd-vo Inst. Matem., Novosibirsk, 2003, 368–375