Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_2_a8, author = {A. N. Karapetyants and V. A. Nogin}, title = {$L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--75}, publisher = {mathdoc}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/} }
TY - JOUR AU - A. N. Karapetyants AU - V. A. Nogin TI - $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 72 EP - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/ LA - ru ID - IVM_2006_2_a8 ER -
%0 Journal Article %A A. N. Karapetyants %A V. A. Nogin %T $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 72-75 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/ %G ru %F IVM_2006_2_a8
A. N. Karapetyants; V. A. Nogin. $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 72-75. http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/