$L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 72-75

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_2_a8,
     author = {A. N. Karapetyants and V. A. Nogin},
     title = {$L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--75},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/}
}
TY  - JOUR
AU  - A. N. Karapetyants
AU  - V. A. Nogin
TI  - $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 72
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/
LA  - ru
ID  - IVM_2006_2_a8
ER  - 
%0 Journal Article
%A A. N. Karapetyants
%A V. A. Nogin
%T $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 72-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/
%G ru
%F IVM_2006_2_a8
A. N. Karapetyants; V. A. Nogin. $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 72-75. http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/