$L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 72-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_2_a8,
     author = {A. N. Karapetyants and V. A. Nogin},
     title = {$L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--75},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/}
}
TY  - JOUR
AU  - A. N. Karapetyants
AU  - V. A. Nogin
TI  - $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 72
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/
LA  - ru
ID  - IVM_2006_2_a8
ER  - 
%0 Journal Article
%A A. N. Karapetyants
%A V. A. Nogin
%T $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 72-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/
%G ru
%F IVM_2006_2_a8
A. N. Karapetyants; V. A. Nogin. $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 72-75. http://geodesic.mathdoc.fr/item/IVM_2006_2_a8/

[1] Phong D. H., Stein E. M., “Hilbert integrals, singular integrals, and Radon transforms, I”, Acta Math., 157 (1986), 99–157 | DOI | MR | Zbl

[2] Ricci F., Stein E. M., “Harmonic analysis on nilpotent groups and singular integrals. I: Oscillatory integrals”, J. Funct. Anal., 73 (1987), 179–194 | DOI | MR | Zbl

[3] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993, 695 pp. | MR | Zbl

[4] Karapetyants A. N., Ramírez E., “A boundedness result for twisted convolution”, Math. Nachr., 250:3 (2003), 58–70 | DOI | MR | Zbl

[5] Mantero A. M., “Asymmetry of twisted convolution operators”, J. Funct. Anal., 47 (1982), 7–25 | DOI | MR | Zbl

[6] Cowling M., “A remark on twisted convolution”, Rend. Circ. Mat. Palermo, 2 (1981), 203–209 | MR

[7] Karapetyants A. N., Karasev D. N., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi yadrami”, Izv. NAN Armenii. Matematika, 38:2 (2003), 37–62 | MR | Zbl

[8] Karasev D. N., Nogin V. A., “On the boundedness of some potential-type operators with oscillating kernels”, Math. Nachr., 278:5 (2005), 554–574 | DOI | MR | Zbl

[9] Karapetyants A. N., Karasev D. N., Nogin V. A., “$L_p\to L_q$-estimates for the fractional acoustic potentials and some related operators”, Fract. Calc. and Appl. Analysis, 8:1–2 (2005), 155–172 | MR | Zbl