Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_2_a4, author = {G. G. Skorik}, title = {An error estimate for the method of mean functions in the problem of the numerical differentiation of a noisy function}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--41}, publisher = {mathdoc}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a4/} }
TY - JOUR AU - G. G. Skorik TI - An error estimate for the method of mean functions in the problem of the numerical differentiation of a noisy function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 35 EP - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_2_a4/ LA - ru ID - IVM_2006_2_a4 ER -
%0 Journal Article %A G. G. Skorik %T An error estimate for the method of mean functions in the problem of the numerical differentiation of a noisy function %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 35-41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_2_a4/ %G ru %F IVM_2006_2_a4
G. G. Skorik. An error estimate for the method of mean functions in the problem of the numerical differentiation of a noisy function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 35-41. http://geodesic.mathdoc.fr/item/IVM_2006_2_a4/
[1] Vasin V. V., “Regulyarizatsiya zadachi chislennogo differentsirovaniya”, Matem. zap. Uralskii un-t, 7:2 (1969), 29–33 | MR | Zbl
[2] Vasin V. V., “Ob ustoichivom vychislenii proizvodnoi v prostranstve $C(-\infty, \infty)$”, Zhurn. vychisl. matem. i matem. fiz., 13:6 (1973), 1383–1389 | MR | Zbl
[3] Groetsch C. W., “Optimal order of accuracy in Vasin's method for differentiation of noisy functions”, J. Optimiz. Theory Appl., 74:2 (1992), 373–378 | DOI | MR | Zbl
[4] Skorik G. G., “O nailuchshei otsenke pogreshnosti metoda usrednyayuschikh yader v zadache differentsirovaniya zashumlennoi funktsii”, Izv. vuzov. Matematika, 2004, no. 3, 76–80 | MR | Zbl
[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962, 255 pp.
[6] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR
[7] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl