Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_2_a2, author = {I. T. Denisyuk}, title = {Solution of the {Lam\'e} wave equation in domains with piecewise-smooth boundaries}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--25}, publisher = {mathdoc}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a2/} }
I. T. Denisyuk. Solution of the Lam\'e wave equation in domains with piecewise-smooth boundaries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 15-25. http://geodesic.mathdoc.fr/item/IVM_2006_2_a2/
[1] Denisyuk I. T., “Reshenie odnoi zadachi sopryazheniya dlya sostavnoi oblasti s uglovymi tochkami na liniyakh razdela”, Izv. vuzov. Matematika, 1996, no. 6, 17–24 | MR | Zbl
[2] Denisyuk I. T., “Odna zadacha sopryazheniya analiticheskikh funktsii v affinno preobrazovannykh oblastyakh s kusochno-gladkimi granitsami”, Izv. vuzov. Matematika, 2000, no. 6, 70–74 | MR | Zbl
[3] Denisyuk I. T., “Zadacha sopryazheniya garmonicheskikh funktsii v trekhmernykh oblastyakh s negladkimi granitsami”, Izv. vuzov. Matematika, 2002, no. 4, 29–35 | MR | Zbl
[4] Denisyuk I. T., “Termouprugost izotropnoi plastinki s uglovymi vklyucheniyami”, Izv. RAN. Mekhan. tverd. tela, 1999, no. 2, 148–155
[5] Denisyuk I. T., “Odna model tonkikh uprugikh vklyuchenii v izotropnoi plastinke”, Izv. RAN. Mekhan. tverd. tela, 2000, no. 4, 140–148
[6] Denisyuk I. T., “Napryazhennoe sostoyanie vblizi osoboi linii razdela sred”, Izv. RAN. Mekhan. tverd. tela, 1995, no. 5, 64–70
[7] Denisyuk I. T., “Napryazheniya vblizi konicheskoi tochki poverkhnosti razdela sred”, Izv. RAN. Mekhan. tverdogo tela, 2001, no. 3, 68–77
[8] Denisyuk I. T., “Osobennost napryazhenii anizotropnoi plastinki s uglovym vyrezom”, Priklad. mekhan., 1996, no. 1, 48–52 | Zbl
[9] Denisyuk I. T., “Napryazheniya anizotropnoi plastinki s uglovymi vklyucheniyami”, Priklad. mekhan., 1999, no. 2, 76–84 | Zbl
[10] Poruchikov V. B., Metody dinamicheskoi teorii uprugosti, Nauka, M., 1986, 328 pp. | MR
[11] Kupradze V. D., Gegeliya T. G., Basheleishvili M. I., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976, 662 pp. | MR
[12] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR
[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[14] Khutoryanskii N. M., “O metode obobschennykh zapazdyvayuschikh potentsialov i integralnykh uravnenii v nestatsionarnykh dinamicheskikh zadachakh teorii uprugosti”, Priklad. probl. prochnosti i plastichnosti, 1978, no. 9, 8–18 | MR
[15] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 318 pp. | MR
[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 1, Nauka, M., 1970, 608 pp.
[17] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981, 688 pp. | MR
[18] Polozhii G. M., Uravneniya matematicheskoi fiziki, Vyssh. shkola, M., 1964, 560 pp.
[19] Denisyuk I. T., “Termonapruzhennya bilya vershini kutovogo mnogogrannogo vklyuchennya”, Fiz.-khim. mekhanika materialiv, 2001, no. 3, 41–47
[20] Denisyuk I. T., “Singulyarni napruzhennya v izotropnii matritsi z pruzhnim klinom”, Fiz.-khim. mekhanika materialiv, 1992, no. 4, 76–81
[21] Denisyuk I. T., “Napruzhennya bilya konichnikh ta piramidalnikh vklyuchen”, Fiz.-khim. mekhanika materialiv, 2000, no. 3, 16–20
[22] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 304 pp. | MR
[23] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 252 pp. | MR | Zbl