A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_2_a0,
     author = {S. A. Aldashev},
     title = {A criterion for the existence of eigenfunctions of the spectral {Darboux--Protter} problems for the multidimensional {Euler--Darboux--Poisson} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 3
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/
LA  - ru
ID  - IVM_2006_2_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 3-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/
%G ru
%F IVM_2006_2_a0
S. A. Aldashev. A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/

[1] Khe K. Ch., “O sobstvennykh funktsiyakh odnorodnykh kraevykh zadach dlya ellipticheskogo uravneniya s operatorami Besselya”, Neklassich. uravneniya matem. fiz., IM SO RAN, Novosibirsk, 2002, 128–135

[2] Protter M. H., “New boundary value problems for the wave equation and equations of mixed type”, J. Rational Mech. and Analysis, 3 (1954), 435–436 | MR

[3] Aldashev S. A., “Kriterii suschestvovaniya sobstvennykh funktsii spektralnoi zadachi Darbu–Prottera dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Tez. III mezhdunarodn. nauch. konf. “Problemy differentsialnykh uravnenii, analiza i algebry”, AGU, Aktobe, 2003, 66–67

[4] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 254 pp. | MR | Zbl

[5] Aldashev S. A., “Nekotorye zadachi dlya mnogomernogo integro-differentsialnogo giperbolicheskogo uravneniya”, Ukr. matem. zhurn., 52:5 (2000), 590–595 | MR | Zbl

[6] Aldashev S. A., “Spektralnye zadachi Darbu–Prottera dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Ukr. matem. zhurn., 54:12 (2002), 1101–1106

[7] Weinstein A., “On the wave equation and the equation of Euler–Poisson”, The Fifth Symposium in applied Math., McGraw-Hill, New York, 1954, 137–147 | MR

[8] Tersenov S. A., Vvedenie v teoriyu uravnenii, vyrozhdayuschikhsya na granitse, Izd-vo Novosibirsk. un-ta, Novosibirsk, 1973, 143 pp. | MR

[9] Aldashev S. A., “O nekotorykh kraevykh zadachakh dlya odnogo klassa singulyarnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 12:6 (1976), 3–14 | Zbl

[10] Tersenov S. A., Vvedenie v teoriyu uravnenii parabolicheskogo tipa s menyayuschimsya napravleniem vremeni, IM SO AN SSSR, Novosibirsk, 1982, 167 pp. | MR | Zbl

[11] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, KBNTs RAN, Nalchik, 2000, 298 pp.

[12] Aldashev S. A., Kraevye zadachi dlya mnogomernykh giperbolicheskikh i smeshannykh uravnenii, Gylym, Almaty, 1994, 170 pp.

[13] Aldashev S. A., “O zadachakh Darbu dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 34:1 (1998), 1–5 | MR