Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_2_a0, author = {S. A. Aldashev}, title = {A criterion for the existence of eigenfunctions of the spectral {Darboux--Protter} problems for the multidimensional {Euler--Darboux--Poisson} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--10}, publisher = {mathdoc}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/} }
TY - JOUR AU - S. A. Aldashev TI - A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 3 EP - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/ LA - ru ID - IVM_2006_2_a0 ER -
%0 Journal Article %A S. A. Aldashev %T A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 3-10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/ %G ru %F IVM_2006_2_a0
S. A. Aldashev. A criterion for the existence of eigenfunctions of the spectral Darboux--Protter problems for the multidimensional Euler--Darboux--Poisson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2006), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2006_2_a0/
[1] Khe K. Ch., “O sobstvennykh funktsiyakh odnorodnykh kraevykh zadach dlya ellipticheskogo uravneniya s operatorami Besselya”, Neklassich. uravneniya matem. fiz., IM SO RAN, Novosibirsk, 2002, 128–135
[2] Protter M. H., “New boundary value problems for the wave equation and equations of mixed type”, J. Rational Mech. and Analysis, 3 (1954), 435–436 | MR
[3] Aldashev S. A., “Kriterii suschestvovaniya sobstvennykh funktsii spektralnoi zadachi Darbu–Prottera dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Tez. III mezhdunarodn. nauch. konf. “Problemy differentsialnykh uravnenii, analiza i algebry”, AGU, Aktobe, 2003, 66–67
[4] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 254 pp. | MR | Zbl
[5] Aldashev S. A., “Nekotorye zadachi dlya mnogomernogo integro-differentsialnogo giperbolicheskogo uravneniya”, Ukr. matem. zhurn., 52:5 (2000), 590–595 | MR | Zbl
[6] Aldashev S. A., “Spektralnye zadachi Darbu–Prottera dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Ukr. matem. zhurn., 54:12 (2002), 1101–1106
[7] Weinstein A., “On the wave equation and the equation of Euler–Poisson”, The Fifth Symposium in applied Math., McGraw-Hill, New York, 1954, 137–147 | MR
[8] Tersenov S. A., Vvedenie v teoriyu uravnenii, vyrozhdayuschikhsya na granitse, Izd-vo Novosibirsk. un-ta, Novosibirsk, 1973, 143 pp. | MR
[9] Aldashev S. A., “O nekotorykh kraevykh zadachakh dlya odnogo klassa singulyarnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 12:6 (1976), 3–14 | Zbl
[10] Tersenov S. A., Vvedenie v teoriyu uravnenii parabolicheskogo tipa s menyayuschimsya napravleniem vremeni, IM SO AN SSSR, Novosibirsk, 1982, 167 pp. | MR | Zbl
[11] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, KBNTs RAN, Nalchik, 2000, 298 pp.
[12] Aldashev S. A., Kraevye zadachi dlya mnogomernykh giperbolicheskikh i smeshannykh uravnenii, Gylym, Almaty, 1994, 170 pp.
[13] Aldashev S. A., “O zadachakh Darbu dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 34:1 (1998), 1–5 | MR