$\overline\partial$-closure of forms represented by the Koppelman integral on the basis of a logarithmic residue
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2006), pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_1_a5,
     author = {T. N. Nikitina},
     title = {$\overline\partial$-closure of forms represented by the {Koppelman} integral on the basis of a logarithmic residue},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--52},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_1_a5/}
}
TY  - JOUR
AU  - T. N. Nikitina
TI  - $\overline\partial$-closure of forms represented by the Koppelman integral on the basis of a logarithmic residue
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 40
EP  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_1_a5/
LA  - ru
ID  - IVM_2006_1_a5
ER  - 
%0 Journal Article
%A T. N. Nikitina
%T $\overline\partial$-closure of forms represented by the Koppelman integral on the basis of a logarithmic residue
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 40-52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_1_a5/
%G ru
%F IVM_2006_1_a5
T. N. Nikitina. $\overline\partial$-closure of forms represented by the Koppelman integral on the basis of a logarithmic residue. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2006), pp. 40-52. http://geodesic.mathdoc.fr/item/IVM_2006_1_a5/

[1] Kytmanov A. M., Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992, 240 pp.

[2] Kytmanov A. M., “Ob integralnom kharakteristicheskom svoistve differentsialnykh form”, Sib. matem. zhurn., 19:4 (1978), 788–792 | MR | Zbl

[3] Airapetyan R. A., Khenkin G. M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya $CR$-funktsii”, UMN, 39:3 (1984), 39–106 | MR

[4] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhn. Sovremen. probl. matem., 7, VINITI, M., 1985, 23–124 | MR

[5] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976, 288 pp. | MR

[6] Aizenberg L. A., Dautov Sh. A., Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975, 115 pp. | MR

[7] Nikitina T. N., “Analogi formul Grina i Koppelmana dlya kogomologii Dolbo na osnove logarifmicheskogo vycheta s osobennostyami na granitse”, Vopr. matem. analiza, Krasnoyarsk, 2002, 152–186

[8] Bochner S., “Analytic and meromorphic continuation by means of Green's formula”, Ann. Math., 44 (1943), 652–673 | DOI | MR | Zbl

[9] Straube E. J., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11:4 (1984), 559–591 | MR | Zbl

[10] Kytmanov A. M., Myslivets S. G., “O postroenii tochnykh kompleksov, svyazannykh s kompleksom Dolbo”, Sib. matem. zhurn., 44:4 (2003), 779–799 | MR | Zbl

[11] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 516 pp. | MR | Zbl

[12] Myslivets S. G., “Ob odnom granichnom variante teoremy Morera”, Sib. matem. zhurn., 42:5 (2001), 1136–1146 | MR | Zbl

[13] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Stud., 75, Princeton, 1972, 140 pp. | MR | Zbl

[14] Aronov A. M., Kytmanov A. M., “O golomorfnosti funktsii, predstavimykh integralom Martinelli–Bokhnera”, Funkts. analiz i ego prilozh., 9:3 (1975), 83–84 | MR | Zbl

[15] Perotti A., “Dirichlet problem for pluriharmonic function of several complex variables”, Commun. Part. Diff. Equat., 24:34 (1999), 707–717 | MR | Zbl

[16] Myslivets M. S., “Ob usloviyakh plyurigarmonicheskogo prodolzheniya raspredelenii s granitsy oblasti”, Mnogom. kompleks. analiz, Krasnoyarsk, 2002, 139–149