On the Riemann method in $\mathbb{R}^n$ for a system with multiple characteristics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2006), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_1_a4,
     author = {L. B. Mironova},
     title = {On the {Riemann} method in $\mathbb{R}^n$ for a system with multiple characteristics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--39},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_1_a4/}
}
TY  - JOUR
AU  - L. B. Mironova
TI  - On the Riemann method in $\mathbb{R}^n$ for a system with multiple characteristics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 34
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_1_a4/
LA  - ru
ID  - IVM_2006_1_a4
ER  - 
%0 Journal Article
%A L. B. Mironova
%T On the Riemann method in $\mathbb{R}^n$ for a system with multiple characteristics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 34-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_1_a4/
%G ru
%F IVM_2006_1_a4
L. B. Mironova. On the Riemann method in $\mathbb{R}^n$ for a system with multiple characteristics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2006), pp. 34-39. http://geodesic.mathdoc.fr/item/IVM_2006_1_a4/

[1] Chekmarev T. V., “Formuly resheniya zadachi Gursa dlya odnoi lineinoi sistemy uravnenii s chastnymi proizvodnymi”, Differents. uravneniya, 18:9 (1982), 1614–1622 | MR | Zbl

[2] Bitsadze A. V., “O strukturnykh svoistvakh reshenii giperbolicheskikh sistem uravnenii v chastnykh proizvodnykh”, Matem. modelirovanie, 6:6 (1994), 22–31 | MR | Zbl

[3] Holmgren E., “Sur les systemes lineaires aux derivees partielles du premier ordre”, Arkiv för matematik, astronomy och fysik, 6:2 (1910), 1–10

[4] Burmistrov B. N., “Reshenie zadachi Koshi metodom Rimana dlya sistemy uravnenii pervogo poryadka s vyrozhdeniem na granitse”, Tr. semin. po kraev. zadacham, 8, Kazansk. un-t, 1971, 41–54 | MR | Zbl

[5] Zhegalov V. I., “Trekhmernyi analog zadachi Gursa”, Neklassicheskie uravneniya i uravneniya smeshannogo tipa, In-t matem. SO AN SSSR, Novosibirsk, 1990, 94–98 | MR | Zbl

[6] Zhegalov V. I., Sevastyanov V. A., “Zadacha Gursa v chetyrekhmernom prostranstve”, Differents. uravneniya, 32:10 (1996), 1429–1430 | MR | Zbl

[7] Sevastyanov V. A., “Metod Rimana dlya trekhmernogo giperbolicheskogo uravneniya tretego poryadka”, Izv. vuzov. Matematika, 1997, no. 5, 69–73 | MR

[8] Sevastyanov V. A., “Ob odnom sluchae zadachi Koshi”, Differents. uravneniya, 34:12 (1998), 1706–1707 | MR

[9] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matematika, 1999, no. 10, 73–76 | MR | Zbl

[10] Zhegalov V. I., Utkina E. A., “Zadacha Gursa dlya odnogo trekhmernogo uravneniya so starshei chastnoi proizvodnoi”, Izv. vuzov. Matematika, 2001, no. 11, 77–81 | MR | Zbl

[11] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. o-vo, 2001, 226 pp.

[12] Zhegalov V. I., Mironov A. N., “O zadachakh Koshi dlya dvukh uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matematika, 2002, no. 5, 23–30 | MR | Zbl

[13] Zhegalov V. I., Utkina E. A., “Ob odnom uravnenii v chastnykh proizvodnykh chetvertogo poryadka s tremya nezavisimymi peremennymi”, Differents. uravneniya, 38:1 (2002), 93–97 | MR

[14] Zabreiko P. P., Koshelev A. I., Integralnye uravneniya, Nauka, M., 1968, 448 pp. | MR

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 2-e izd., Nauka, M., 1971, 512 pp. | MR | Zbl

[16] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970, 712 pp. | Zbl

[17] Zorich V. A., Matematicheskii analiz, Ch. 2, Nauka, M., 1984, 640 pp. | MR