Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_1_a10, author = {B. M. Dubrov}, title = {On a class of contact invariants of systems of ordinary differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--77}, publisher = {mathdoc}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_1_a10/} }
B. M. Dubrov. On a class of contact invariants of systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2006), pp. 76-77. http://geodesic.mathdoc.fr/item/IVM_2006_1_a10/
[1] Wilczynski E. J., Projective differentail geometry of curves and ruled surfaces, Teubner, Leipzig, 1905, 295 S.
[2] Se-ashi Yu., “A geometric construction of Laguerre–Forsyth's canonical forms of linear ordinary differential equations”, Adv. Studies in Pure Math., 22, 1993, 265–297 | MR | Zbl
[3] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986, 334 pp. | MR
[4] Olver P. J., Symmetry, invariants and equivalence, Springer-Verlag, New York, 1995, 525 pp. | MR | Zbl
[5] Wünschmann K. W., Über Beruhrungsbedingungen bei Integralkurven von Differentialgleichungen, Inaug. Dissert., Teubner, Leipzig, 1905 | Zbl
[6] Chern S.-S., “The geometry of the differential equation $y'''=F(x, y, y', y'')$”, Sci. Rep. Nat. Tsing Hua Univ., 4 (1950), 97–111 | MR
[7] Fels M., “The equivalence problem for systems of second order ordinary differential equations”, Proc. London Math. Soc., 71 (1995), 221–240 | DOI | MR | Zbl
[8] Anderson I. M., Thompson G., “The inverse problem of the calculus of variations for ordinary differential equations”, Mem. Amer. Math. Soc., 98, 1992, 1–83 | MR
[9] Doubrov B., “Contact trivialization of ordinary differential equations”, Differential Geometry and Its Applications, Proc. Conf. (Opava, Czech Republic), 2001, 73–84 | MR | Zbl