Sequential derivatives of operators and their applications in nonsmooth problems of optimal control
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_12_a8,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Sequential derivatives of operators and their applications in nonsmooth problems of optimal control},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--87},
     publisher = {mathdoc},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_12_a8/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Sequential derivatives of operators and their applications in nonsmooth problems of optimal control
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 75
EP  - 87
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_12_a8/
LA  - ru
ID  - IVM_2006_12_a8
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Sequential derivatives of operators and their applications in nonsmooth problems of optimal control
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 75-87
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_12_a8/
%G ru
%F IVM_2006_12_a8
S. Ya. Serovaǐskiǐ. Sequential derivatives of operators and their applications in nonsmooth problems of optimal control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 75-87. http://geodesic.mathdoc.fr/item/IVM_2006_12_a8/

[1] Averbukh V. I., Smolyanov O. G., “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[2] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976, 311 pp. | MR

[3] Burbaki N., Teoriya mnozhestv, Mir, M., 1965, 456 pp.

[4] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[6] Lions Zh.–L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR

[7] Krein S. G. (red.), Funktsionalnyi analiz, Nauka, M., 1972, 544 pp. | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[9] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[10] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Nauk. Dumka, Kiev, 1988, 284 pp. | MR

[11] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989, 280 pp. | MR | Zbl

[12] Serovaiskii S. Ya., “Optimizatsiya v nelineinykh ellipticheskikh sistemakh s upravleniem v koeffitsientakh”, Matem. zametki, 54:2 (1993), 85–95 | MR

[13] Serovaiskii S. Ya., “Gradientnye metody v zadache optimalnogo upravleniya nelineinoi ellipticheskoi sistemoi”, Sib. matem. zhurn., 37:5 (1996), 1154–1166 | MR | Zbl

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[15] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[16] Serovaiskii S. Ya., “Optimalnoe upravlenie dlya uravnenii ellipticheskogo tipa s negladkoi nelineinostyu”, Differents. uravneniya, 309:4 (2003), 1420–1424 | MR

[17] Serovaiskii S. Ya., “Priblizhennoe reshenie zadachi optimalnogo upravleniya dlya singulyarnogo uravneniya ellipticheskogo tipa s negladkoi nelineinostyu”, Izv. vuzov. Matematika, 2004, no. 1, 80–86 | MR

[18] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 510 pp. | MR