Symmetric duality in optimization and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_12_a5,
     author = {V. I. Zorkal'tsev},
     title = {Symmetric duality in optimization and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--64},
     publisher = {mathdoc},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_12_a5/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
TI  - Symmetric duality in optimization and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 55
EP  - 64
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_12_a5/
LA  - ru
ID  - IVM_2006_12_a5
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%T Symmetric duality in optimization and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 55-64
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_12_a5/
%G ru
%F IVM_2006_12_a5
V. I. Zorkal'tsev. Symmetric duality in optimization and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 55-64. http://geodesic.mathdoc.fr/item/IVM_2006_12_a5/

[1] Zorkaltsev V. I., Simmetrichnaya dvoistvennost. Prilozheniya k modelyam elektricheskikh i gidravlicheskikh tsepei, Preprint ISEM SO RAN, Irkutsk, 2004, 40 pp.

[2] Zorkaltsev V. I., “Resheniya sistem lineinykh neravenstv, naimenee udalennye ot nachala koordinat”, Metody issledov. i modelir. tekhnich., prirodnykh i sotsialnykh sistem, Nauka, Novosibirsk, 2004, 241–255

[3] Dennis Dzh., Matematicheskoe programmirovanie i elektricheskie tsepi, In. lit., M., 1961, 216 pp. | MR | Zbl

[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[5] Merenkov A. P., Khasilev V. Ya., Teoriya gidravlicheskikh tsepei, Nauka, M., 1988, 294 pp.

[6] Merenkov A. P., Sennov E. V., Sumarokov S. V. i dr., Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnabzheniya, Nauka, Novosibirsk, 1992, 407 pp.

[7] Zorkaltsev V. I., “Simmetrichnaya dvoistvennost v optimizatsii pri separabelnykh tselevykh funktsiyakh”, Optimizatsiya, upravlenie, intellekt, 2005, no. 1, 72–83

[8] Epifanov S. P., Zorkaltsev V. I., “Simmetrichnaya dvoistvennost i gidravlicheskie tsepi”, Modelir. tekhnich. i prirodnykh sistem, Tr. XIII Baikalskoi mezhdunarodnoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya”. T. 5, ISEM SO RAN, Irkutsk, 2005, 119–124

[9] Geil Dzh., Teoriya lineinykh ekonomicheskikh modelei, In. lit., M., 1963, 418 pp.

[10] Zorkaltsev V. I., Khamisov O. V., Ravnovesnye modeli ekonomiki i energetiki, Nauka, Novosibirsk, 2006, 180 pp.

[11] Golikov A. I., Evtushenko Yu. G., “Teoremy ob alternativakh i ikh primeneniya v chislennykh metodakh”, Zhurn. vychisl. matem. i matem. fiz., 43:3 (2003), 354–375 | MR | Zbl

[12] Golikov A. I., Evtushenko Yu. G., “Novyi metod resheniya sistem lineinykh ravenstv i neravenstv”, Dokl. RAN, 381:4 (2001), 444–447 | MR | Zbl

[13] Eremin I. I., “Dvoistvennost dlya regulyarizovannykh zadach lineinogo programmirovaniya”, Problemy optimizatsii i ekonomicheskie prilozheniya, Omskii filial IM SO RAN, Omsk, 2003, 37–39