Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_12_a4, author = {A. Ya. Zolotukhin and R. V. Namm and A. V. Pachina}, title = {On the linear rate of convergence of methods with iterative proximal regularization}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--54}, publisher = {mathdoc}, number = {12}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/} }
TY - JOUR AU - A. Ya. Zolotukhin AU - R. V. Namm AU - A. V. Pachina TI - On the linear rate of convergence of methods with iterative proximal regularization JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2006 SP - 44 EP - 54 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/ LA - ru ID - IVM_2006_12_a4 ER -
%0 Journal Article %A A. Ya. Zolotukhin %A R. V. Namm %A A. V. Pachina %T On the linear rate of convergence of methods with iterative proximal regularization %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2006 %P 44-54 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/ %G ru %F IVM_2006_12_a4
A. Ya. Zolotukhin; R. V. Namm; A. V. Pachina. On the linear rate of convergence of methods with iterative proximal regularization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 44-54. http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/
[1] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Contr. Optim., 14 (1976), 877–898 | DOI | MR | Zbl
[2] Tseng P., “On linear convergence of iterative methods for the variational inequality problem”, J. Comp. Appl. Math., 60 (1995), 237–252 | DOI | MR | Zbl
[3] Kaplan A. A., Namm R. V., “Ob otsenke skorosti skhodimosti iteratsionnykh protsessov s prox-regulyarizatsiei”, Issledov. po uslovnoi korrekt. zadach matem. fiz., Sb. nauchn. tr. pod red. akad. M. M. Lavrenteva, SO AN SSSR. In-t matem., 1989, 60–77 | MR
[4] Vikhtenko E. M., Namm R. V., “O metode resheniya polukoertsitivnykh variatsionnykh neravenstv, osnovannom na metode iterativnoi proksimalnoi regulyarizatsii”, Izv. vuzov. Matematika, 2004, no. 1, 31–35 | MR | Zbl
[5] Kaplan A. A., “Ob ustoichivosti metodov resheniya zadach vypuklogo programmirovaniya i variatsionnykh neravenstv”, Modeli i metody optimizatsii, Tr. In-ta matem. SO AN SSSR, 10, 1988, 132–159 | Zbl
[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR
[7] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986, 270 pp. | MR
[8] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974, 159 pp.
[9] Namm R. V., “K kharakteristike predelnoi tochki v metode iterativnoi prox-regulyarizatsii”, Sib. zhurn. vychisl. matem., 1:2 (1998), 143–152 | MR | Zbl