On the linear rate of convergence of methods with iterative proximal regularization
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 44-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_12_a4,
     author = {A. Ya. Zolotukhin and R. V. Namm and A. V. Pachina},
     title = {On the linear rate of convergence of methods with iterative proximal regularization},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--54},
     publisher = {mathdoc},
     number = {12},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/}
}
TY  - JOUR
AU  - A. Ya. Zolotukhin
AU  - R. V. Namm
AU  - A. V. Pachina
TI  - On the linear rate of convergence of methods with iterative proximal regularization
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 44
EP  - 54
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/
LA  - ru
ID  - IVM_2006_12_a4
ER  - 
%0 Journal Article
%A A. Ya. Zolotukhin
%A R. V. Namm
%A A. V. Pachina
%T On the linear rate of convergence of methods with iterative proximal regularization
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 44-54
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/
%G ru
%F IVM_2006_12_a4
A. Ya. Zolotukhin; R. V. Namm; A. V. Pachina. On the linear rate of convergence of methods with iterative proximal regularization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2006), pp. 44-54. http://geodesic.mathdoc.fr/item/IVM_2006_12_a4/

[1] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Contr. Optim., 14 (1976), 877–898 | DOI | MR | Zbl

[2] Tseng P., “On linear convergence of iterative methods for the variational inequality problem”, J. Comp. Appl. Math., 60 (1995), 237–252 | DOI | MR | Zbl

[3] Kaplan A. A., Namm R. V., “Ob otsenke skorosti skhodimosti iteratsionnykh protsessov s prox-regulyarizatsiei”, Issledov. po uslovnoi korrekt. zadach matem. fiz., Sb. nauchn. tr. pod red. akad. M. M. Lavrenteva, SO AN SSSR. In-t matem., 1989, 60–77 | MR

[4] Vikhtenko E. M., Namm R. V., “O metode resheniya polukoertsitivnykh variatsionnykh neravenstv, osnovannom na metode iterativnoi proksimalnoi regulyarizatsii”, Izv. vuzov. Matematika, 2004, no. 1, 31–35 | MR | Zbl

[5] Kaplan A. A., “Ob ustoichivosti metodov resheniya zadach vypuklogo programmirovaniya i variatsionnykh neravenstv”, Modeli i metody optimizatsii, Tr. In-ta matem. SO AN SSSR, 10, 1988, 132–159 | Zbl

[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[7] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986, 270 pp. | MR

[8] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974, 159 pp.

[9] Namm R. V., “K kharakteristike predelnoi tochki v metode iterativnoi prox-regulyarizatsii”, Sib. zhurn. vychisl. matem., 1:2 (1998), 143–152 | MR | Zbl