Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_11_a9, author = {A. E. Choke Rivero}, title = {The {Carath\'eodory} problem in the class $\mathscr S[a,b]$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {61--76}, publisher = {mathdoc}, number = {11}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/} }
A. E. Choke Rivero. The Carath\'eodory problem in the class $\mathscr S[a,b]$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 61-76. http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/
[1] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973, 551 pp. | MR
[2] Dyukarev Yu. M., Choke Rivero A. E., “Zadacha Nevanlinny–Pika v klasse $S[a, b]$”, Izv. vuzov. Matematika, 2003, no. 2, 36–45 | MR | Zbl
[3] Dyukarev Yu. M., Choke Rivero A. E., “Stepennaya problema momentov na kompaktnom intervale”, Matem. zametki, 69:2 (2001), 200–213 | MR | Zbl
[4] Choque Rivero A. E., Dyukarev Yu., Fritzsche B., Kirstein B., “A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments”, Oper. Theory Adv. Appl.
[5] Kovalishina I. V., “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 | MR
[6] Ivanchenko T. S., Sakhnovich L. A., “An operator approach to the Potapov scheme for the solution of interpolation problems”, Oper. Theory Adv. Appl., 72 (1994), 48–86 | MR | Zbl
[7] Bolotnikov V., Sakhnovich L., “On an operator approach to interpolation problems for Stieltjes functions”, Integral Equations Operator Theory, 35:4 (1999), 423–470 | DOI | MR | Zbl
[8] Dyukarev Yu., “Integral representations of a pair of nonnegative operators and interpolations problems on the Stieltjes class”, Oper. Theory Adv. Appl., 95 (1997), 165–184 | MR | Zbl
[9] Dyukarev Yu. M., “Obschaya skhema resheniya zadach interpolyatsii v klasse Stiltesa, osnovannaya na soglasovannykh integralnykh predstavleniyakh par neotritsatelnykh operatorov, I”, Matem. fiz. Analitich. geom., 6:1/2 (1999), 30–54 | MR | Zbl
[10] Dyukarev Yu. M., “Faktorizatsiya operatornykh funktsii multiplikativnogo klassa Stiltesa”, Dokl. NAN Ukrainy. Matem. estestv. tekhn. nauki, 2000, no. 9, 23–26 | MR | Zbl
[11] Choque Rivero A. E., Dyukarev Yu., Fritzsche B., Kirstein B., “A truncated matricial moment problem on a finite interval”, Interpolation, Schur Functions and Moment Problems, Oper. Theory Adv. Appl., 165, Birkhäuser, Basel, 2006, 121–173 | Zbl
[12] Dubovoj V. K., Fritzsche B., Kirstein B., Matricial version of the classical Schur problem, Teubner-Texte zur Mathematik, 129, Teubner, Stuttgart–Leipzig, 1992, 355 pp. | MR | Zbl