The Carath\'eodory problem in the class $\mathscr S[a,b]$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 61-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_11_a9,
     author = {A. E. Choke Rivero},
     title = {The {Carath\'eodory} problem in the class $\mathscr S[a,b]$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--76},
     publisher = {mathdoc},
     number = {11},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/}
}
TY  - JOUR
AU  - A. E. Choke Rivero
TI  - The Carath\'eodory problem in the class $\mathscr S[a,b]$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 61
EP  - 76
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/
LA  - ru
ID  - IVM_2006_11_a9
ER  - 
%0 Journal Article
%A A. E. Choke Rivero
%T The Carath\'eodory problem in the class $\mathscr S[a,b]$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 61-76
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/
%G ru
%F IVM_2006_11_a9
A. E. Choke Rivero. The Carath\'eodory problem in the class $\mathscr S[a,b]$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 61-76. http://geodesic.mathdoc.fr/item/IVM_2006_11_a9/

[1] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973, 551 pp. | MR

[2] Dyukarev Yu. M., Choke Rivero A. E., “Zadacha Nevanlinny–Pika v klasse $S[a, b]$”, Izv. vuzov. Matematika, 2003, no. 2, 36–45 | MR | Zbl

[3] Dyukarev Yu. M., Choke Rivero A. E., “Stepennaya problema momentov na kompaktnom intervale”, Matem. zametki, 69:2 (2001), 200–213 | MR | Zbl

[4] Choque Rivero A. E., Dyukarev Yu., Fritzsche B., Kirstein B., “A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments”, Oper. Theory Adv. Appl.

[5] Kovalishina I. V., “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 | MR

[6] Ivanchenko T. S., Sakhnovich L. A., “An operator approach to the Potapov scheme for the solution of interpolation problems”, Oper. Theory Adv. Appl., 72 (1994), 48–86 | MR | Zbl

[7] Bolotnikov V., Sakhnovich L., “On an operator approach to interpolation problems for Stieltjes functions”, Integral Equations Operator Theory, 35:4 (1999), 423–470 | DOI | MR | Zbl

[8] Dyukarev Yu., “Integral representations of a pair of nonnegative operators and interpolations problems on the Stieltjes class”, Oper. Theory Adv. Appl., 95 (1997), 165–184 | MR | Zbl

[9] Dyukarev Yu. M., “Obschaya skhema resheniya zadach interpolyatsii v klasse Stiltesa, osnovannaya na soglasovannykh integralnykh predstavleniyakh par neotritsatelnykh operatorov, I”, Matem. fiz. Analitich. geom., 6:1/2 (1999), 30–54 | MR | Zbl

[10] Dyukarev Yu. M., “Faktorizatsiya operatornykh funktsii multiplikativnogo klassa Stiltesa”, Dokl. NAN Ukrainy. Matem. estestv. tekhn. nauki, 2000, no. 9, 23–26 | MR | Zbl

[11] Choque Rivero A. E., Dyukarev Yu., Fritzsche B., Kirstein B., “A truncated matricial moment problem on a finite interval”, Interpolation, Schur Functions and Moment Problems, Oper. Theory Adv. Appl., 165, Birkhäuser, Basel, 2006, 121–173 | Zbl

[12] Dubovoj V. K., Fritzsche B., Kirstein B., Matricial version of the classical Schur problem, Teubner-Texte zur Mathematik, 129, Teubner, Stuttgart–Leipzig, 1992, 355 pp. | MR | Zbl